The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents

The formation of polyploid cells is part of the developmental program of several tissues. During postnatal development, binucleated tetraploid cells arise in the liver, caused by failure in cytokinesis. In this report, we have shown that the initiation of cytokinesis failure events and the subsequen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2009-07, Vol.119 (7), p.1880-1887
Hauptverfasser: Celton-Morizur, Séverine, Merlen, Grégory, Couton, Dominique, Margall-Ducos, Germain, Desdouets, Chantal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1887
container_issue 7
container_start_page 1880
container_title The Journal of clinical investigation
container_volume 119
creator Celton-Morizur, Séverine
Merlen, Grégory
Couton, Dominique
Margall-Ducos, Germain
Desdouets, Chantal
description The formation of polyploid cells is part of the developmental program of several tissues. During postnatal development, binucleated tetraploid cells arise in the liver, caused by failure in cytokinesis. In this report, we have shown that the initiation of cytokinesis failure events and the subsequent appearance of binucleated tetraploid cells are strictly controlled by the suckling-to-weaning transition in rodents. We found that daily light/dark rhythms and carbohydrate intake did not affect liver tetraploidy. In contrast, impairment of insulin signaling drastically reduced the formation of binucleated tetraploid cells, whereas repeated insulin injections promoted the generation of these liver cells. Furthermore, inhibition of Akt activity decreased the number of cytokinesis failure events, possibly through the mammalian target of rapamycin signaling complex 2 (mTORC2), which indicates that the PI3K/Akt pathway lies downstream of the insulin signal to regulate the tetraploidization process. To our knowledge, these results are the first demonstration in a physiological context that insulin signaling through Akt controls a specific cell division program and leads to the physiologic generation of binucleated tetraploid liver cells.
doi_str_mv 10.1172/jci38677
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2701880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A213084886</galeid><sourcerecordid>A213084886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c649t-91fdd5d29a2b6cba0b1ad9aea0df3d4c692b24df0293c1ef4901e2b2c19030873</originalsourceid><addsrcrecordid>eNqNkt9qFDEUxgdRbK2CTyDBi6LgtMlk_uVGWBa1KwsFrd6GTHJmJ2tmMk0yq30GX9psd9Fu6YXkInDO73wn5-RLkpcEnxFSZedrqWldVtWj5JgURZ3WGa0fJ8cYZyRlFa2PkmferzEmeV7kT5MjwkpMi7w8Tn5fdYD04Cejh_PZj4BGEbqf4gZJOwRnjUcC-RGkbrVEEoxBSm-013ZAo7MrJ3oUOhGQAaE8ChatYAAnwhawLWr0MMmYC6BQgODEaKxWyOgNuFs5H5sjZxUMwT9PnrTCeHixv0-Sbx8_XM0v0uXlp8V8tkxlmbOQMtIqVaiMiawpZSNwQ4RiAgRWLVW5LFnWZLlqccaoJNDmDBOIIUkYpriu6Enyfqc7Tk0PSsbeThg-Ot0Ld8Ot0PwwM-iOr-yGZxUmdY2jwLudQHev7GK25HGZ4HqOcY5zytiGRPx038_Z6wl84L322-HFAHbyvKzyui7LIoKv74FrO7kh7oJnGBd5TQsaoXQHrYSB2K218Y1yt3ZjB2h1DM8yEkfdykb-7AE-HgW9lg8WvD0o2DoBfoWVmLzni69f_p-9_H7Int5hOxAmdN6aaesVfwi-2YHSWe8dtH93TDDf-p1_ni9u_R7RV3e_8h-4Nzj9A6hd-r4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200548353</pqid></control><display><type>article</type><title>The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Celton-Morizur, Séverine ; Merlen, Grégory ; Couton, Dominique ; Margall-Ducos, Germain ; Desdouets, Chantal</creator><creatorcontrib>Celton-Morizur, Séverine ; Merlen, Grégory ; Couton, Dominique ; Margall-Ducos, Germain ; Desdouets, Chantal</creatorcontrib><description>The formation of polyploid cells is part of the developmental program of several tissues. During postnatal development, binucleated tetraploid cells arise in the liver, caused by failure in cytokinesis. In this report, we have shown that the initiation of cytokinesis failure events and the subsequent appearance of binucleated tetraploid cells are strictly controlled by the suckling-to-weaning transition in rodents. We found that daily light/dark rhythms and carbohydrate intake did not affect liver tetraploidy. In contrast, impairment of insulin signaling drastically reduced the formation of binucleated tetraploid cells, whereas repeated insulin injections promoted the generation of these liver cells. Furthermore, inhibition of Akt activity decreased the number of cytokinesis failure events, possibly through the mammalian target of rapamycin signaling complex 2 (mTORC2), which indicates that the PI3K/Akt pathway lies downstream of the insulin signal to regulate the tetraploidization process. To our knowledge, these results are the first demonstration in a physiological context that insulin signaling through Akt controls a specific cell division program and leads to the physiologic generation of binucleated tetraploid liver cells.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/jci38677</identifier><identifier>PMID: 19603546</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Biomedical research ; Carbohydrates ; Cell cycle ; Cell Division ; Cellular signal transduction ; Dietary Carbohydrates - administration &amp; dosage ; Hepatocytes - physiology ; Human health and pathology ; Hépatology and Gastroenterology ; Insulin ; Insulin - physiology ; Life Sciences ; Liver ; Liver cells ; Mice ; Mice, Obese ; Phosphatidylinositol 3-Kinases - physiology ; Physiological aspects ; Physiology ; Polyploidy ; Proto-Oncogene Proteins c-akt - physiology ; Rats ; Rats, Wistar ; Rodents ; Signal Transduction ; Smooth muscle ; Weaning</subject><ispartof>The Journal of clinical investigation, 2009-07, Vol.119 (7), p.1880-1887</ispartof><rights>COPYRIGHT 2009 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Jul 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2009, American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c649t-91fdd5d29a2b6cba0b1ad9aea0df3d4c692b24df0293c1ef4901e2b2c19030873</citedby><cites>FETCH-LOGICAL-c649t-91fdd5d29a2b6cba0b1ad9aea0df3d4c692b24df0293c1ef4901e2b2c19030873</cites><orcidid>0000-0001-5622-9777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701880/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701880/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19603546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00404399$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Celton-Morizur, Séverine</creatorcontrib><creatorcontrib>Merlen, Grégory</creatorcontrib><creatorcontrib>Couton, Dominique</creatorcontrib><creatorcontrib>Margall-Ducos, Germain</creatorcontrib><creatorcontrib>Desdouets, Chantal</creatorcontrib><title>The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>The formation of polyploid cells is part of the developmental program of several tissues. During postnatal development, binucleated tetraploid cells arise in the liver, caused by failure in cytokinesis. In this report, we have shown that the initiation of cytokinesis failure events and the subsequent appearance of binucleated tetraploid cells are strictly controlled by the suckling-to-weaning transition in rodents. We found that daily light/dark rhythms and carbohydrate intake did not affect liver tetraploidy. In contrast, impairment of insulin signaling drastically reduced the formation of binucleated tetraploid cells, whereas repeated insulin injections promoted the generation of these liver cells. Furthermore, inhibition of Akt activity decreased the number of cytokinesis failure events, possibly through the mammalian target of rapamycin signaling complex 2 (mTORC2), which indicates that the PI3K/Akt pathway lies downstream of the insulin signal to regulate the tetraploidization process. To our knowledge, these results are the first demonstration in a physiological context that insulin signaling through Akt controls a specific cell division program and leads to the physiologic generation of binucleated tetraploid liver cells.</description><subject>Animals</subject><subject>Biomedical research</subject><subject>Carbohydrates</subject><subject>Cell cycle</subject><subject>Cell Division</subject><subject>Cellular signal transduction</subject><subject>Dietary Carbohydrates - administration &amp; dosage</subject><subject>Hepatocytes - physiology</subject><subject>Human health and pathology</subject><subject>Hépatology and Gastroenterology</subject><subject>Insulin</subject><subject>Insulin - physiology</subject><subject>Life Sciences</subject><subject>Liver</subject><subject>Liver cells</subject><subject>Mice</subject><subject>Mice, Obese</subject><subject>Phosphatidylinositol 3-Kinases - physiology</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Polyploidy</subject><subject>Proto-Oncogene Proteins c-akt - physiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Smooth muscle</subject><subject>Weaning</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkt9qFDEUxgdRbK2CTyDBi6LgtMlk_uVGWBa1KwsFrd6GTHJmJ2tmMk0yq30GX9psd9Fu6YXkInDO73wn5-RLkpcEnxFSZedrqWldVtWj5JgURZ3WGa0fJ8cYZyRlFa2PkmferzEmeV7kT5MjwkpMi7w8Tn5fdYD04Cejh_PZj4BGEbqf4gZJOwRnjUcC-RGkbrVEEoxBSm-013ZAo7MrJ3oUOhGQAaE8ChatYAAnwhawLWr0MMmYC6BQgODEaKxWyOgNuFs5H5sjZxUMwT9PnrTCeHixv0-Sbx8_XM0v0uXlp8V8tkxlmbOQMtIqVaiMiawpZSNwQ4RiAgRWLVW5LFnWZLlqccaoJNDmDBOIIUkYpriu6Enyfqc7Tk0PSsbeThg-Ot0Ld8Ot0PwwM-iOr-yGZxUmdY2jwLudQHev7GK25HGZ4HqOcY5zytiGRPx038_Z6wl84L322-HFAHbyvKzyui7LIoKv74FrO7kh7oJnGBd5TQsaoXQHrYSB2K218Y1yt3ZjB2h1DM8yEkfdykb-7AE-HgW9lg8WvD0o2DoBfoWVmLzni69f_p-9_H7Int5hOxAmdN6aaesVfwi-2YHSWe8dtH93TDDf-p1_ni9u_R7RV3e_8h-4Nzj9A6hd-r4</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Celton-Morizur, Séverine</creator><creator>Merlen, Grégory</creator><creator>Couton, Dominique</creator><creator>Margall-Ducos, Germain</creator><creator>Desdouets, Chantal</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5622-9777</orcidid></search><sort><creationdate>20090701</creationdate><title>The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents</title><author>Celton-Morizur, Séverine ; Merlen, Grégory ; Couton, Dominique ; Margall-Ducos, Germain ; Desdouets, Chantal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c649t-91fdd5d29a2b6cba0b1ad9aea0df3d4c692b24df0293c1ef4901e2b2c19030873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biomedical research</topic><topic>Carbohydrates</topic><topic>Cell cycle</topic><topic>Cell Division</topic><topic>Cellular signal transduction</topic><topic>Dietary Carbohydrates - administration &amp; dosage</topic><topic>Hepatocytes - physiology</topic><topic>Human health and pathology</topic><topic>Hépatology and Gastroenterology</topic><topic>Insulin</topic><topic>Insulin - physiology</topic><topic>Life Sciences</topic><topic>Liver</topic><topic>Liver cells</topic><topic>Mice</topic><topic>Mice, Obese</topic><topic>Phosphatidylinositol 3-Kinases - physiology</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Polyploidy</topic><topic>Proto-Oncogene Proteins c-akt - physiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Smooth muscle</topic><topic>Weaning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Celton-Morizur, Séverine</creatorcontrib><creatorcontrib>Merlen, Grégory</creatorcontrib><creatorcontrib>Couton, Dominique</creatorcontrib><creatorcontrib>Margall-Ducos, Germain</creatorcontrib><creatorcontrib>Desdouets, Chantal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celton-Morizur, Séverine</au><au>Merlen, Grégory</au><au>Couton, Dominique</au><au>Margall-Ducos, Germain</au><au>Desdouets, Chantal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>119</volume><issue>7</issue><spage>1880</spage><epage>1887</epage><pages>1880-1887</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>The formation of polyploid cells is part of the developmental program of several tissues. During postnatal development, binucleated tetraploid cells arise in the liver, caused by failure in cytokinesis. In this report, we have shown that the initiation of cytokinesis failure events and the subsequent appearance of binucleated tetraploid cells are strictly controlled by the suckling-to-weaning transition in rodents. We found that daily light/dark rhythms and carbohydrate intake did not affect liver tetraploidy. In contrast, impairment of insulin signaling drastically reduced the formation of binucleated tetraploid cells, whereas repeated insulin injections promoted the generation of these liver cells. Furthermore, inhibition of Akt activity decreased the number of cytokinesis failure events, possibly through the mammalian target of rapamycin signaling complex 2 (mTORC2), which indicates that the PI3K/Akt pathway lies downstream of the insulin signal to regulate the tetraploidization process. To our knowledge, these results are the first demonstration in a physiological context that insulin signaling through Akt controls a specific cell division program and leads to the physiologic generation of binucleated tetraploid liver cells.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>19603546</pmid><doi>10.1172/jci38677</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5622-9777</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2009-07, Vol.119 (7), p.1880-1887
issn 0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2701880
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Biomedical research
Carbohydrates
Cell cycle
Cell Division
Cellular signal transduction
Dietary Carbohydrates - administration & dosage
Hepatocytes - physiology
Human health and pathology
Hépatology and Gastroenterology
Insulin
Insulin - physiology
Life Sciences
Liver
Liver cells
Mice
Mice, Obese
Phosphatidylinositol 3-Kinases - physiology
Physiological aspects
Physiology
Polyploidy
Proto-Oncogene Proteins c-akt - physiology
Rats
Rats, Wistar
Rodents
Signal Transduction
Smooth muscle
Weaning
title The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20insulin/Akt%20pathway%20controls%20a%20specific%20cell%20division%20program%20that%20leads%20to%20generation%20of%20binucleated%20tetraploid%20liver%20cells%20in%20rodents&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Celton-Morizur,%20S%C3%A9verine&rft.date=2009-07-01&rft.volume=119&rft.issue=7&rft.spage=1880&rft.epage=1887&rft.pages=1880-1887&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/jci38677&rft_dat=%3Cgale_pubme%3EA213084886%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200548353&rft_id=info:pmid/19603546&rft_galeid=A213084886&rfr_iscdi=true