Parstatin: a cryptic peptide involved in cardioprotection after ischaemia and reperfusion injury

Aims Thrombin activates protease-activated receptor 1 by proteolytic cleavage of the N-terminus. Although much research has focused on the activated receptor, little is known about the 41-amino acid N-terminal peptide (parstatin). We hypothesized that parstatin would protect the heart against ischae...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular research 2009-07, Vol.83 (2), p.325-334
Hauptverfasser: Strande, Jennifer L., Widlansky, Michael E., Tsopanoglou, Nikos E., Su, Jidong, Wang, JingLi, Hsu, Anna, Routhu, Kasi V., Baker, John E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 2
container_start_page 325
container_title Cardiovascular research
container_volume 83
creator Strande, Jennifer L.
Widlansky, Michael E.
Tsopanoglou, Nikos E.
Su, Jidong
Wang, JingLi
Hsu, Anna
Routhu, Kasi V.
Baker, John E.
description Aims Thrombin activates protease-activated receptor 1 by proteolytic cleavage of the N-terminus. Although much research has focused on the activated receptor, little is known about the 41-amino acid N-terminal peptide (parstatin). We hypothesized that parstatin would protect the heart against ischaemia–reperfusion injury. Methods and results We assessed the protective role of parstatin in an in vivo and in vitro rat model of myocardial ischaemia–reperfusion injury. Parstatin treatment before, during, and after ischaemia decreased infarct size by 26%, 23%, and 18%, respectively, in an in vivo model of ischaemia–reperfusion injury. Parstatin treatment immediately before ischaemia decreased infarct size by 65% and increased recovery in ventricular function by 23% in an in vitro model. We then assessed whether parstatin induced cardioprotection by activation of a Gi-protein-dependent pathway. Gi-protein inactivation by pertussis toxin completely abolished the cardioprotective effects. The cardioprotective effects were also abolished by inhibition of nitric oxide synthase (NOS), extracellular signal-regulated kinases 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), and KATP channels in vitro. Furthermore, parstatin increased coronary flow and decreased perfusion pressure in the isolated heart. The vasodilatory properties of parstatin were confirmed in rat coronary arterioles. Conclusion A single treatment of parstatin administered prior to ischaemia confers immediate cardioprotection by recruiting the Gi-protein activation pathway including p38 MAPK, ERK1/2, NOS, and KATP channels. Parstatin exerts effects on both the cardiomyocytes and the coronary circulation to induce cardioprotection. This suggests a potential therapeutic role of parstatin in the treatment of cardiac injury resulting from ischaemia and reperfusion.
doi_str_mv 10.1093/cvr/cvp122
format Article
fullrecord <record><control><sourceid>oup_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2701720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cvr/cvp122</oup_id><sourcerecordid>10.1093/cvr/cvp122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-43551d5fe24619cbde0bd12eb00fb041373211470547865db2fd80e5ff5fd0e83</originalsourceid><addsrcrecordid>eNp9kE1PGzEQhq0KVAL00h9Q-cKl0oI_1xsOSCjlS6JqD1SKuLhee1xMk92V7UTk39doIygXDqOZ0TzzzuhF6DMlx5RM-YldxxIDZewDmlAlZcWZkDtoQghpqprXfA_tp_RYWimV-Ij26JQ3RNBmgn7_NDFlk0N3ig22cTPkYPEAJTnAoVv3izW4UmBrogv9EPsMNoe-w8ZniDgk-2BgGQw2ncMRBoh-lZ7noXtcxc0h2vVmkeDTNh-gX5cXd7Pr6vbH1c3s_LayQohcCS4lddIDEzWd2tYBaR1l0BLi2_IqV5xRKhSRQjW1dC3zriEgvZfeEWj4ATobdYdVuwRnocvRLPQQw9LEje5N0G8nXXjQf_q1ZopQxUgR-DoK2NinFMG_7FKin33WxWc9-lzgL_9fe0W3xhbgaAT61fC-UDVyIWV4eiFN_KtrxZXU1_N7_W32_b7m89Lwfx0kmRI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parstatin: a cryptic peptide involved in cardioprotection after ischaemia and reperfusion injury</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>Oxford Journals</source><creator>Strande, Jennifer L. ; Widlansky, Michael E. ; Tsopanoglou, Nikos E. ; Su, Jidong ; Wang, JingLi ; Hsu, Anna ; Routhu, Kasi V. ; Baker, John E.</creator><creatorcontrib>Strande, Jennifer L. ; Widlansky, Michael E. ; Tsopanoglou, Nikos E. ; Su, Jidong ; Wang, JingLi ; Hsu, Anna ; Routhu, Kasi V. ; Baker, John E.</creatorcontrib><description>Aims Thrombin activates protease-activated receptor 1 by proteolytic cleavage of the N-terminus. Although much research has focused on the activated receptor, little is known about the 41-amino acid N-terminal peptide (parstatin). We hypothesized that parstatin would protect the heart against ischaemia–reperfusion injury. Methods and results We assessed the protective role of parstatin in an in vivo and in vitro rat model of myocardial ischaemia–reperfusion injury. Parstatin treatment before, during, and after ischaemia decreased infarct size by 26%, 23%, and 18%, respectively, in an in vivo model of ischaemia–reperfusion injury. Parstatin treatment immediately before ischaemia decreased infarct size by 65% and increased recovery in ventricular function by 23% in an in vitro model. We then assessed whether parstatin induced cardioprotection by activation of a Gi-protein-dependent pathway. Gi-protein inactivation by pertussis toxin completely abolished the cardioprotective effects. The cardioprotective effects were also abolished by inhibition of nitric oxide synthase (NOS), extracellular signal-regulated kinases 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), and KATP channels in vitro. Furthermore, parstatin increased coronary flow and decreased perfusion pressure in the isolated heart. The vasodilatory properties of parstatin were confirmed in rat coronary arterioles. Conclusion A single treatment of parstatin administered prior to ischaemia confers immediate cardioprotection by recruiting the Gi-protein activation pathway including p38 MAPK, ERK1/2, NOS, and KATP channels. Parstatin exerts effects on both the cardiomyocytes and the coronary circulation to induce cardioprotection. This suggests a potential therapeutic role of parstatin in the treatment of cardiac injury resulting from ischaemia and reperfusion.</description><identifier>ISSN: 0008-6363</identifier><identifier>EISSN: 1755-3245</identifier><identifier>DOI: 10.1093/cvr/cvp122</identifier><identifier>PMID: 19380418</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Blood Pressure - drug effects ; Cardioprotection ; Cardiotonic Agents - pharmacology ; Coronary Circulation - drug effects ; Cryptic peptide ; Disease Models, Animal ; Dose-Response Relationship, Drug ; Enzyme Inhibitors - pharmacology ; Extracellular Signal-Regulated MAP Kinases - metabolism ; GTP-Binding Protein alpha Subunits, Gi-Go - metabolism ; Guanylate Cyclase - metabolism ; Heart Rate - drug effects ; Ischaemia ; KATP Channels - drug effects ; KATP Channels - metabolism ; Male ; Myocardial Infarction - metabolism ; Myocardial Infarction - pathology ; Myocardial Infarction - physiopathology ; Myocardial Infarction - prevention &amp; control ; Myocardial Reperfusion Injury - metabolism ; Myocardial Reperfusion Injury - pathology ; Myocardial Reperfusion Injury - physiopathology ; Myocardial Reperfusion Injury - prevention &amp; control ; Myocardium - metabolism ; Myocardium - pathology ; Nitric Oxide Synthase Type III - metabolism ; Original ; p38 Mitogen-Activated Protein Kinases - metabolism ; Peptide Fragments - pharmacology ; Potassium Channel Blockers - pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptor, PAR-1 - metabolism ; Receptors, Cytoplasmic and Nuclear - metabolism ; Reperfusion injury ; Signal Transduction - drug effects ; Soluble Guanylyl Cyclase ; Time Factors ; Vasodilation ; Vasodilation - drug effects ; Ventricular Function, Left - drug effects</subject><ispartof>Cardiovascular research, 2009-07, Vol.83 (2), p.325-334</ispartof><rights>Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2009. For permissions please email: journals.permissions@oxfordjournals.org. 2009</rights><rights>Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2009. For permissions please email: journals.permissions@oxfordjournals.org.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-43551d5fe24619cbde0bd12eb00fb041373211470547865db2fd80e5ff5fd0e83</citedby><cites>FETCH-LOGICAL-c444t-43551d5fe24619cbde0bd12eb00fb041373211470547865db2fd80e5ff5fd0e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1583,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19380418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Strande, Jennifer L.</creatorcontrib><creatorcontrib>Widlansky, Michael E.</creatorcontrib><creatorcontrib>Tsopanoglou, Nikos E.</creatorcontrib><creatorcontrib>Su, Jidong</creatorcontrib><creatorcontrib>Wang, JingLi</creatorcontrib><creatorcontrib>Hsu, Anna</creatorcontrib><creatorcontrib>Routhu, Kasi V.</creatorcontrib><creatorcontrib>Baker, John E.</creatorcontrib><title>Parstatin: a cryptic peptide involved in cardioprotection after ischaemia and reperfusion injury</title><title>Cardiovascular research</title><addtitle>Cardiovasc Res</addtitle><description>Aims Thrombin activates protease-activated receptor 1 by proteolytic cleavage of the N-terminus. Although much research has focused on the activated receptor, little is known about the 41-amino acid N-terminal peptide (parstatin). We hypothesized that parstatin would protect the heart against ischaemia–reperfusion injury. Methods and results We assessed the protective role of parstatin in an in vivo and in vitro rat model of myocardial ischaemia–reperfusion injury. Parstatin treatment before, during, and after ischaemia decreased infarct size by 26%, 23%, and 18%, respectively, in an in vivo model of ischaemia–reperfusion injury. Parstatin treatment immediately before ischaemia decreased infarct size by 65% and increased recovery in ventricular function by 23% in an in vitro model. We then assessed whether parstatin induced cardioprotection by activation of a Gi-protein-dependent pathway. Gi-protein inactivation by pertussis toxin completely abolished the cardioprotective effects. The cardioprotective effects were also abolished by inhibition of nitric oxide synthase (NOS), extracellular signal-regulated kinases 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), and KATP channels in vitro. Furthermore, parstatin increased coronary flow and decreased perfusion pressure in the isolated heart. The vasodilatory properties of parstatin were confirmed in rat coronary arterioles. Conclusion A single treatment of parstatin administered prior to ischaemia confers immediate cardioprotection by recruiting the Gi-protein activation pathway including p38 MAPK, ERK1/2, NOS, and KATP channels. Parstatin exerts effects on both the cardiomyocytes and the coronary circulation to induce cardioprotection. This suggests a potential therapeutic role of parstatin in the treatment of cardiac injury resulting from ischaemia and reperfusion.</description><subject>Animals</subject><subject>Blood Pressure - drug effects</subject><subject>Cardioprotection</subject><subject>Cardiotonic Agents - pharmacology</subject><subject>Coronary Circulation - drug effects</subject><subject>Cryptic peptide</subject><subject>Disease Models, Animal</subject><subject>Dose-Response Relationship, Drug</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>GTP-Binding Protein alpha Subunits, Gi-Go - metabolism</subject><subject>Guanylate Cyclase - metabolism</subject><subject>Heart Rate - drug effects</subject><subject>Ischaemia</subject><subject>KATP Channels - drug effects</subject><subject>KATP Channels - metabolism</subject><subject>Male</subject><subject>Myocardial Infarction - metabolism</subject><subject>Myocardial Infarction - pathology</subject><subject>Myocardial Infarction - physiopathology</subject><subject>Myocardial Infarction - prevention &amp; control</subject><subject>Myocardial Reperfusion Injury - metabolism</subject><subject>Myocardial Reperfusion Injury - pathology</subject><subject>Myocardial Reperfusion Injury - physiopathology</subject><subject>Myocardial Reperfusion Injury - prevention &amp; control</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Nitric Oxide Synthase Type III - metabolism</subject><subject>Original</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Peptide Fragments - pharmacology</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor, PAR-1 - metabolism</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>Reperfusion injury</subject><subject>Signal Transduction - drug effects</subject><subject>Soluble Guanylyl Cyclase</subject><subject>Time Factors</subject><subject>Vasodilation</subject><subject>Vasodilation - drug effects</subject><subject>Ventricular Function, Left - drug effects</subject><issn>0008-6363</issn><issn>1755-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PGzEQhq0KVAL00h9Q-cKl0oI_1xsOSCjlS6JqD1SKuLhee1xMk92V7UTk39doIygXDqOZ0TzzzuhF6DMlx5RM-YldxxIDZewDmlAlZcWZkDtoQghpqprXfA_tp_RYWimV-Ij26JQ3RNBmgn7_NDFlk0N3ig22cTPkYPEAJTnAoVv3izW4UmBrogv9EPsMNoe-w8ZniDgk-2BgGQw2ncMRBoh-lZ7noXtcxc0h2vVmkeDTNh-gX5cXd7Pr6vbH1c3s_LayQohcCS4lddIDEzWd2tYBaR1l0BLi2_IqV5xRKhSRQjW1dC3zriEgvZfeEWj4ATobdYdVuwRnocvRLPQQw9LEje5N0G8nXXjQf_q1ZopQxUgR-DoK2NinFMG_7FKin33WxWc9-lzgL_9fe0W3xhbgaAT61fC-UDVyIWV4eiFN_KtrxZXU1_N7_W32_b7m89Lwfx0kmRI</recordid><startdate>20090715</startdate><enddate>20090715</enddate><creator>Strande, Jennifer L.</creator><creator>Widlansky, Michael E.</creator><creator>Tsopanoglou, Nikos E.</creator><creator>Su, Jidong</creator><creator>Wang, JingLi</creator><creator>Hsu, Anna</creator><creator>Routhu, Kasi V.</creator><creator>Baker, John E.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20090715</creationdate><title>Parstatin: a cryptic peptide involved in cardioprotection after ischaemia and reperfusion injury</title><author>Strande, Jennifer L. ; Widlansky, Michael E. ; Tsopanoglou, Nikos E. ; Su, Jidong ; Wang, JingLi ; Hsu, Anna ; Routhu, Kasi V. ; Baker, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-43551d5fe24619cbde0bd12eb00fb041373211470547865db2fd80e5ff5fd0e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Blood Pressure - drug effects</topic><topic>Cardioprotection</topic><topic>Cardiotonic Agents - pharmacology</topic><topic>Coronary Circulation - drug effects</topic><topic>Cryptic peptide</topic><topic>Disease Models, Animal</topic><topic>Dose-Response Relationship, Drug</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>GTP-Binding Protein alpha Subunits, Gi-Go - metabolism</topic><topic>Guanylate Cyclase - metabolism</topic><topic>Heart Rate - drug effects</topic><topic>Ischaemia</topic><topic>KATP Channels - drug effects</topic><topic>KATP Channels - metabolism</topic><topic>Male</topic><topic>Myocardial Infarction - metabolism</topic><topic>Myocardial Infarction - pathology</topic><topic>Myocardial Infarction - physiopathology</topic><topic>Myocardial Infarction - prevention &amp; control</topic><topic>Myocardial Reperfusion Injury - metabolism</topic><topic>Myocardial Reperfusion Injury - pathology</topic><topic>Myocardial Reperfusion Injury - physiopathology</topic><topic>Myocardial Reperfusion Injury - prevention &amp; control</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Nitric Oxide Synthase Type III - metabolism</topic><topic>Original</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Peptide Fragments - pharmacology</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor, PAR-1 - metabolism</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>Reperfusion injury</topic><topic>Signal Transduction - drug effects</topic><topic>Soluble Guanylyl Cyclase</topic><topic>Time Factors</topic><topic>Vasodilation</topic><topic>Vasodilation - drug effects</topic><topic>Ventricular Function, Left - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strande, Jennifer L.</creatorcontrib><creatorcontrib>Widlansky, Michael E.</creatorcontrib><creatorcontrib>Tsopanoglou, Nikos E.</creatorcontrib><creatorcontrib>Su, Jidong</creatorcontrib><creatorcontrib>Wang, JingLi</creatorcontrib><creatorcontrib>Hsu, Anna</creatorcontrib><creatorcontrib>Routhu, Kasi V.</creatorcontrib><creatorcontrib>Baker, John E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cardiovascular research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strande, Jennifer L.</au><au>Widlansky, Michael E.</au><au>Tsopanoglou, Nikos E.</au><au>Su, Jidong</au><au>Wang, JingLi</au><au>Hsu, Anna</au><au>Routhu, Kasi V.</au><au>Baker, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parstatin: a cryptic peptide involved in cardioprotection after ischaemia and reperfusion injury</atitle><jtitle>Cardiovascular research</jtitle><addtitle>Cardiovasc Res</addtitle><date>2009-07-15</date><risdate>2009</risdate><volume>83</volume><issue>2</issue><spage>325</spage><epage>334</epage><pages>325-334</pages><issn>0008-6363</issn><eissn>1755-3245</eissn><abstract>Aims Thrombin activates protease-activated receptor 1 by proteolytic cleavage of the N-terminus. Although much research has focused on the activated receptor, little is known about the 41-amino acid N-terminal peptide (parstatin). We hypothesized that parstatin would protect the heart against ischaemia–reperfusion injury. Methods and results We assessed the protective role of parstatin in an in vivo and in vitro rat model of myocardial ischaemia–reperfusion injury. Parstatin treatment before, during, and after ischaemia decreased infarct size by 26%, 23%, and 18%, respectively, in an in vivo model of ischaemia–reperfusion injury. Parstatin treatment immediately before ischaemia decreased infarct size by 65% and increased recovery in ventricular function by 23% in an in vitro model. We then assessed whether parstatin induced cardioprotection by activation of a Gi-protein-dependent pathway. Gi-protein inactivation by pertussis toxin completely abolished the cardioprotective effects. The cardioprotective effects were also abolished by inhibition of nitric oxide synthase (NOS), extracellular signal-regulated kinases 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), and KATP channels in vitro. Furthermore, parstatin increased coronary flow and decreased perfusion pressure in the isolated heart. The vasodilatory properties of parstatin were confirmed in rat coronary arterioles. Conclusion A single treatment of parstatin administered prior to ischaemia confers immediate cardioprotection by recruiting the Gi-protein activation pathway including p38 MAPK, ERK1/2, NOS, and KATP channels. Parstatin exerts effects on both the cardiomyocytes and the coronary circulation to induce cardioprotection. This suggests a potential therapeutic role of parstatin in the treatment of cardiac injury resulting from ischaemia and reperfusion.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>19380418</pmid><doi>10.1093/cvr/cvp122</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6363
ispartof Cardiovascular research, 2009-07, Vol.83 (2), p.325-334
issn 0008-6363
1755-3245
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2701720
source MEDLINE; Alma/SFX Local Collection; EZB Electronic Journals Library; Oxford Journals
subjects Animals
Blood Pressure - drug effects
Cardioprotection
Cardiotonic Agents - pharmacology
Coronary Circulation - drug effects
Cryptic peptide
Disease Models, Animal
Dose-Response Relationship, Drug
Enzyme Inhibitors - pharmacology
Extracellular Signal-Regulated MAP Kinases - metabolism
GTP-Binding Protein alpha Subunits, Gi-Go - metabolism
Guanylate Cyclase - metabolism
Heart Rate - drug effects
Ischaemia
KATP Channels - drug effects
KATP Channels - metabolism
Male
Myocardial Infarction - metabolism
Myocardial Infarction - pathology
Myocardial Infarction - physiopathology
Myocardial Infarction - prevention & control
Myocardial Reperfusion Injury - metabolism
Myocardial Reperfusion Injury - pathology
Myocardial Reperfusion Injury - physiopathology
Myocardial Reperfusion Injury - prevention & control
Myocardium - metabolism
Myocardium - pathology
Nitric Oxide Synthase Type III - metabolism
Original
p38 Mitogen-Activated Protein Kinases - metabolism
Peptide Fragments - pharmacology
Potassium Channel Blockers - pharmacology
Rats
Rats, Sprague-Dawley
Receptor, PAR-1 - metabolism
Receptors, Cytoplasmic and Nuclear - metabolism
Reperfusion injury
Signal Transduction - drug effects
Soluble Guanylyl Cyclase
Time Factors
Vasodilation
Vasodilation - drug effects
Ventricular Function, Left - drug effects
title Parstatin: a cryptic peptide involved in cardioprotection after ischaemia and reperfusion injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parstatin:%20a%20cryptic%20peptide%20involved%20in%20cardioprotection%20after%20ischaemia%20and%20reperfusion%20injury&rft.jtitle=Cardiovascular%20research&rft.au=Strande,%20Jennifer%20L.&rft.date=2009-07-15&rft.volume=83&rft.issue=2&rft.spage=325&rft.epage=334&rft.pages=325-334&rft.issn=0008-6363&rft.eissn=1755-3245&rft_id=info:doi/10.1093/cvr/cvp122&rft_dat=%3Coup_pubme%3E10.1093/cvr/cvp122%3C/oup_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19380418&rft_oup_id=10.1093/cvr/cvp122&rfr_iscdi=true