Alterations in hepatic glucose and energy metabolism as a result of calorie and carbohydrate restriction

Carbohydrate restriction is a common weight‐loss approach that modifies hepatic metabolism by increasing gluconeogenesis (GNG) and ketosis. Because little is known about the effect of carbohydrate restriction on the origin of gluconeogenic precursors (GNG from glycerol [GNGglycerol] and GNG from lac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hepatology (Baltimore, Md.) Md.), 2008-11, Vol.48 (5), p.1487-1496
Hauptverfasser: Browning, Jeffrey D., Weis, Brian, Davis, Jeannie, Satapati, Santhosh, Merritt, Matthew, Malloy, Craig R., Burgess, Shawn C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1496
container_issue 5
container_start_page 1487
container_title Hepatology (Baltimore, Md.)
container_volume 48
creator Browning, Jeffrey D.
Weis, Brian
Davis, Jeannie
Satapati, Santhosh
Merritt, Matthew
Malloy, Craig R.
Burgess, Shawn C.
description Carbohydrate restriction is a common weight‐loss approach that modifies hepatic metabolism by increasing gluconeogenesis (GNG) and ketosis. Because little is known about the effect of carbohydrate restriction on the origin of gluconeogenic precursors (GNG from glycerol [GNGglycerol] and GNG from lactate/amino acids [GNGphosphoenolpyruvate {PEP}]) or its consequence to hepatic energy homeostasis, we studied these parameters in a group of overweight/obese subjects undergoing weight‐loss via dietary restriction. We used 2H and 13C tracers and nuclear magnetic resonance spectroscopy to measure the sources of hepatic glucose and tricarboxylic acid (TCA) cycle flux in weight‐stable subjects (n = 7) and subjects following carbohydrate restriction (n = 7) or calorie restriction (n = 7). The majority of hepatic glucose production in carbohydrate restricted subjects came from GNGPEP. The contribution of glycerol to GNG was similar in all groups despite evidence of increased fat oxidation in carbohydrate restricted subjects. A strong correlation between TCA cycle flux and GNGPEP was found, though the reliance on TCA cycle energy production for GNG was attenuated in subjects undergoing carbohydrate restriction. Together, these data imply that the TCA cycle is the energetic patron of GNG. However, the relationship between these two pathways is modified by carbohydrate restriction, suggesting an increased reliance of the hepatocyte on energy generated outside of the TCA cycle when GNGPEP is maximal. Conclusion: Carbohydrate restriction modifies hepatic GNG by increasing reliance on substrates like lactate or amino acids but not glycerol. This modification is associated with a reorganization of hepatic energy metabolism suggestive of enhanced hepatic β‐oxidation. (HEPATOLOGY 2008;48:1487–1496.)
doi_str_mv 10.1002/hep.22504
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2701295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69745650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5094-23ddb9126ebd1649b2a864fe4f9ec286a8c4c46f1cb217275c08f73b5242d62b3</originalsourceid><addsrcrecordid>eNp1kcFu1DAURS0EokNhwQ8gb0DqIq39YjvJBqmqWopUCRawtmznZcbIiQc7Ac3f4yGjAgtWluWj857vJeQ1Z5ecMbja4f4SQDLxhGy4hKaqa8mekg2DhlUdr7sz8iLnb4yxTkD7nJzxtgOpBGzI7jrMmMzs45Spn2hRlYuj27C4mJGaqac4Ydoe6IizsTH4PFKTqaEJ8xJmGgfqTIjJr7AzycbdoS9OPCJz8u5of0meDSZkfHU6z8nXu9svN_fVw6cPH2-uHyony3YV1H1vOw4Kbc-V6CyYVokBxdChg1aZ1gkn1MCdBd5AIx1rh6a2EgT0Cmx9Tt6v3v1iR-wdTnMyQe-TH0066Gi8_vdl8ju9jT90yYpDJ4vg3UmQ4velfECPPjsMwUwYl6xV1wipJCvgxQq6FHNOODwO4Uwfe9ElTP27l8K--XurP-SpiAK8PQEmlziHZCbn8yMHrK3Zyl2t3E8f8PD_ifr-9vM6-heZgKa4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69745650</pqid></control><display><type>article</type><title>Alterations in hepatic glucose and energy metabolism as a result of calorie and carbohydrate restriction</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library All Journals</source><creator>Browning, Jeffrey D. ; Weis, Brian ; Davis, Jeannie ; Satapati, Santhosh ; Merritt, Matthew ; Malloy, Craig R. ; Burgess, Shawn C.</creator><creatorcontrib>Browning, Jeffrey D. ; Weis, Brian ; Davis, Jeannie ; Satapati, Santhosh ; Merritt, Matthew ; Malloy, Craig R. ; Burgess, Shawn C.</creatorcontrib><description>Carbohydrate restriction is a common weight‐loss approach that modifies hepatic metabolism by increasing gluconeogenesis (GNG) and ketosis. Because little is known about the effect of carbohydrate restriction on the origin of gluconeogenic precursors (GNG from glycerol [GNGglycerol] and GNG from lactate/amino acids [GNGphosphoenolpyruvate {PEP}]) or its consequence to hepatic energy homeostasis, we studied these parameters in a group of overweight/obese subjects undergoing weight‐loss via dietary restriction. We used 2H and 13C tracers and nuclear magnetic resonance spectroscopy to measure the sources of hepatic glucose and tricarboxylic acid (TCA) cycle flux in weight‐stable subjects (n = 7) and subjects following carbohydrate restriction (n = 7) or calorie restriction (n = 7). The majority of hepatic glucose production in carbohydrate restricted subjects came from GNGPEP. The contribution of glycerol to GNG was similar in all groups despite evidence of increased fat oxidation in carbohydrate restricted subjects. A strong correlation between TCA cycle flux and GNGPEP was found, though the reliance on TCA cycle energy production for GNG was attenuated in subjects undergoing carbohydrate restriction. Together, these data imply that the TCA cycle is the energetic patron of GNG. However, the relationship between these two pathways is modified by carbohydrate restriction, suggesting an increased reliance of the hepatocyte on energy generated outside of the TCA cycle when GNGPEP is maximal. Conclusion: Carbohydrate restriction modifies hepatic GNG by increasing reliance on substrates like lactate or amino acids but not glycerol. This modification is associated with a reorganization of hepatic energy metabolism suggestive of enhanced hepatic β‐oxidation. (HEPATOLOGY 2008;48:1487–1496.)</description><identifier>ISSN: 0270-9139</identifier><identifier>ISSN: 1527-3350</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.22504</identifier><identifier>PMID: 18925642</identifier><identifier>CODEN: HPTLD9</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adolescent ; Adult ; Aged ; Biological and medical sciences ; Body Mass Index ; Diet, Reducing ; Dietary Carbohydrates ; Energy Intake ; Energy Metabolism ; Female ; Food Preferences ; Gastroenterology. Liver. Pancreas. Abdomen ; Glucose - metabolism ; Humans ; Lipids - blood ; Liver - metabolism ; Liver. Biliary tract. Portal circulation. Exocrine pancreas ; Magnetic Resonance Spectroscopy ; Male ; Medical sciences ; Middle Aged ; Surveys and Questionnaires</subject><ispartof>Hepatology (Baltimore, Md.), 2008-11, Vol.48 (5), p.1487-1496</ispartof><rights>Copyright © 2008 American Association for the Study of Liver Diseases</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5094-23ddb9126ebd1649b2a864fe4f9ec286a8c4c46f1cb217275c08f73b5242d62b3</citedby><cites>FETCH-LOGICAL-c5094-23ddb9126ebd1649b2a864fe4f9ec286a8c4c46f1cb217275c08f73b5242d62b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.22504$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.22504$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20830642$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18925642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Browning, Jeffrey D.</creatorcontrib><creatorcontrib>Weis, Brian</creatorcontrib><creatorcontrib>Davis, Jeannie</creatorcontrib><creatorcontrib>Satapati, Santhosh</creatorcontrib><creatorcontrib>Merritt, Matthew</creatorcontrib><creatorcontrib>Malloy, Craig R.</creatorcontrib><creatorcontrib>Burgess, Shawn C.</creatorcontrib><title>Alterations in hepatic glucose and energy metabolism as a result of calorie and carbohydrate restriction</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Carbohydrate restriction is a common weight‐loss approach that modifies hepatic metabolism by increasing gluconeogenesis (GNG) and ketosis. Because little is known about the effect of carbohydrate restriction on the origin of gluconeogenic precursors (GNG from glycerol [GNGglycerol] and GNG from lactate/amino acids [GNGphosphoenolpyruvate {PEP}]) or its consequence to hepatic energy homeostasis, we studied these parameters in a group of overweight/obese subjects undergoing weight‐loss via dietary restriction. We used 2H and 13C tracers and nuclear magnetic resonance spectroscopy to measure the sources of hepatic glucose and tricarboxylic acid (TCA) cycle flux in weight‐stable subjects (n = 7) and subjects following carbohydrate restriction (n = 7) or calorie restriction (n = 7). The majority of hepatic glucose production in carbohydrate restricted subjects came from GNGPEP. The contribution of glycerol to GNG was similar in all groups despite evidence of increased fat oxidation in carbohydrate restricted subjects. A strong correlation between TCA cycle flux and GNGPEP was found, though the reliance on TCA cycle energy production for GNG was attenuated in subjects undergoing carbohydrate restriction. Together, these data imply that the TCA cycle is the energetic patron of GNG. However, the relationship between these two pathways is modified by carbohydrate restriction, suggesting an increased reliance of the hepatocyte on energy generated outside of the TCA cycle when GNGPEP is maximal. Conclusion: Carbohydrate restriction modifies hepatic GNG by increasing reliance on substrates like lactate or amino acids but not glycerol. This modification is associated with a reorganization of hepatic energy metabolism suggestive of enhanced hepatic β‐oxidation. (HEPATOLOGY 2008;48:1487–1496.)</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Biological and medical sciences</subject><subject>Body Mass Index</subject><subject>Diet, Reducing</subject><subject>Dietary Carbohydrates</subject><subject>Energy Intake</subject><subject>Energy Metabolism</subject><subject>Female</subject><subject>Food Preferences</subject><subject>Gastroenterology. Liver. Pancreas. Abdomen</subject><subject>Glucose - metabolism</subject><subject>Humans</subject><subject>Lipids - blood</subject><subject>Liver - metabolism</subject><subject>Liver. Biliary tract. Portal circulation. Exocrine pancreas</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Surveys and Questionnaires</subject><issn>0270-9139</issn><issn>1527-3350</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAURS0EokNhwQ8gb0DqIq39YjvJBqmqWopUCRawtmznZcbIiQc7Ac3f4yGjAgtWluWj857vJeQ1Z5ecMbja4f4SQDLxhGy4hKaqa8mekg2DhlUdr7sz8iLnb4yxTkD7nJzxtgOpBGzI7jrMmMzs45Spn2hRlYuj27C4mJGaqac4Ydoe6IizsTH4PFKTqaEJ8xJmGgfqTIjJr7AzycbdoS9OPCJz8u5of0meDSZkfHU6z8nXu9svN_fVw6cPH2-uHyony3YV1H1vOw4Kbc-V6CyYVokBxdChg1aZ1gkn1MCdBd5AIx1rh6a2EgT0Cmx9Tt6v3v1iR-wdTnMyQe-TH0066Gi8_vdl8ju9jT90yYpDJ4vg3UmQ4velfECPPjsMwUwYl6xV1wipJCvgxQq6FHNOODwO4Uwfe9ElTP27l8K--XurP-SpiAK8PQEmlziHZCbn8yMHrK3Zyl2t3E8f8PD_ifr-9vM6-heZgKa4</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Browning, Jeffrey D.</creator><creator>Weis, Brian</creator><creator>Davis, Jeannie</creator><creator>Satapati, Santhosh</creator><creator>Merritt, Matthew</creator><creator>Malloy, Craig R.</creator><creator>Burgess, Shawn C.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200811</creationdate><title>Alterations in hepatic glucose and energy metabolism as a result of calorie and carbohydrate restriction</title><author>Browning, Jeffrey D. ; Weis, Brian ; Davis, Jeannie ; Satapati, Santhosh ; Merritt, Matthew ; Malloy, Craig R. ; Burgess, Shawn C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5094-23ddb9126ebd1649b2a864fe4f9ec286a8c4c46f1cb217275c08f73b5242d62b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Biological and medical sciences</topic><topic>Body Mass Index</topic><topic>Diet, Reducing</topic><topic>Dietary Carbohydrates</topic><topic>Energy Intake</topic><topic>Energy Metabolism</topic><topic>Female</topic><topic>Food Preferences</topic><topic>Gastroenterology. Liver. Pancreas. Abdomen</topic><topic>Glucose - metabolism</topic><topic>Humans</topic><topic>Lipids - blood</topic><topic>Liver - metabolism</topic><topic>Liver. Biliary tract. Portal circulation. Exocrine pancreas</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Surveys and Questionnaires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Browning, Jeffrey D.</creatorcontrib><creatorcontrib>Weis, Brian</creatorcontrib><creatorcontrib>Davis, Jeannie</creatorcontrib><creatorcontrib>Satapati, Santhosh</creatorcontrib><creatorcontrib>Merritt, Matthew</creatorcontrib><creatorcontrib>Malloy, Craig R.</creatorcontrib><creatorcontrib>Burgess, Shawn C.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Browning, Jeffrey D.</au><au>Weis, Brian</au><au>Davis, Jeannie</au><au>Satapati, Santhosh</au><au>Merritt, Matthew</au><au>Malloy, Craig R.</au><au>Burgess, Shawn C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alterations in hepatic glucose and energy metabolism as a result of calorie and carbohydrate restriction</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2008-11</date><risdate>2008</risdate><volume>48</volume><issue>5</issue><spage>1487</spage><epage>1496</epage><pages>1487-1496</pages><issn>0270-9139</issn><issn>1527-3350</issn><eissn>1527-3350</eissn><coden>HPTLD9</coden><abstract>Carbohydrate restriction is a common weight‐loss approach that modifies hepatic metabolism by increasing gluconeogenesis (GNG) and ketosis. Because little is known about the effect of carbohydrate restriction on the origin of gluconeogenic precursors (GNG from glycerol [GNGglycerol] and GNG from lactate/amino acids [GNGphosphoenolpyruvate {PEP}]) or its consequence to hepatic energy homeostasis, we studied these parameters in a group of overweight/obese subjects undergoing weight‐loss via dietary restriction. We used 2H and 13C tracers and nuclear magnetic resonance spectroscopy to measure the sources of hepatic glucose and tricarboxylic acid (TCA) cycle flux in weight‐stable subjects (n = 7) and subjects following carbohydrate restriction (n = 7) or calorie restriction (n = 7). The majority of hepatic glucose production in carbohydrate restricted subjects came from GNGPEP. The contribution of glycerol to GNG was similar in all groups despite evidence of increased fat oxidation in carbohydrate restricted subjects. A strong correlation between TCA cycle flux and GNGPEP was found, though the reliance on TCA cycle energy production for GNG was attenuated in subjects undergoing carbohydrate restriction. Together, these data imply that the TCA cycle is the energetic patron of GNG. However, the relationship between these two pathways is modified by carbohydrate restriction, suggesting an increased reliance of the hepatocyte on energy generated outside of the TCA cycle when GNGPEP is maximal. Conclusion: Carbohydrate restriction modifies hepatic GNG by increasing reliance on substrates like lactate or amino acids but not glycerol. This modification is associated with a reorganization of hepatic energy metabolism suggestive of enhanced hepatic β‐oxidation. (HEPATOLOGY 2008;48:1487–1496.)</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>18925642</pmid><doi>10.1002/hep.22504</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-9139
ispartof Hepatology (Baltimore, Md.), 2008-11, Vol.48 (5), p.1487-1496
issn 0270-9139
1527-3350
1527-3350
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2701295
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library All Journals
subjects Adolescent
Adult
Aged
Biological and medical sciences
Body Mass Index
Diet, Reducing
Dietary Carbohydrates
Energy Intake
Energy Metabolism
Female
Food Preferences
Gastroenterology. Liver. Pancreas. Abdomen
Glucose - metabolism
Humans
Lipids - blood
Liver - metabolism
Liver. Biliary tract. Portal circulation. Exocrine pancreas
Magnetic Resonance Spectroscopy
Male
Medical sciences
Middle Aged
Surveys and Questionnaires
title Alterations in hepatic glucose and energy metabolism as a result of calorie and carbohydrate restriction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alterations%20in%20hepatic%20glucose%20and%20energy%20metabolism%20as%20a%20result%20of%20calorie%20and%20carbohydrate%20restriction&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Browning,%20Jeffrey%20D.&rft.date=2008-11&rft.volume=48&rft.issue=5&rft.spage=1487&rft.epage=1496&rft.pages=1487-1496&rft.issn=0270-9139&rft.eissn=1527-3350&rft.coden=HPTLD9&rft_id=info:doi/10.1002/hep.22504&rft_dat=%3Cproquest_pubme%3E69745650%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69745650&rft_id=info:pmid/18925642&rfr_iscdi=true