Effects of Differential Glycosylation of Glycodelins on Lymphocyte Survival

Glycodelin is a human glycoprotein with four reported glycoforms, namely glycodelin-A (GdA), glycodelin-F (GdF), glycodelin-C (GdC), and glycodelin-S (GdS). These glycoforms have the same protein core and appear to differ in their N-glycosylation. The glycosylation of GdA is completely different fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2009-05, Vol.284 (22), p.15084-15096
Hauptverfasser: Lee, Cheuk-Lun, Pang, Poh-Choo, Yeung, William S.B., Tissot, Bérangère, Panico, Maria, Lao, Terence T.H., Chu, Ivan K., Lee, Kai-Fai, Chung, Man-Kin, Lam, Kevin K.W., Koistinen, Riitta, Koistinen, Hannu, Seppälä, Markku, Morris, Howard R., Dell, Anne, Chiu, Philip C.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15096
container_issue 22
container_start_page 15084
container_title The Journal of biological chemistry
container_volume 284
creator Lee, Cheuk-Lun
Pang, Poh-Choo
Yeung, William S.B.
Tissot, Bérangère
Panico, Maria
Lao, Terence T.H.
Chu, Ivan K.
Lee, Kai-Fai
Chung, Man-Kin
Lam, Kevin K.W.
Koistinen, Riitta
Koistinen, Hannu
Seppälä, Markku
Morris, Howard R.
Dell, Anne
Chiu, Philip C.N.
description Glycodelin is a human glycoprotein with four reported glycoforms, namely glycodelin-A (GdA), glycodelin-F (GdF), glycodelin-C (GdC), and glycodelin-S (GdS). These glycoforms have the same protein core and appear to differ in their N-glycosylation. The glycosylation of GdA is completely different from that of GdS. GdA inhibits proliferation and induces cell death of T cells. However, the glycosylation and immunomodulating activities of GdF and GdC are not known. This study aimed to use ultra-high sensitivity mass spectrometry to compare the glycomes of GdA, GdC, and GdF and to study the relationship between the immunological activity and glycosylation pattern among glycodelin glycoforms. Using MALDI-TOF strategies, the glycoforms were shown to contain an enormous diversity of bi-, tri-, and tetra-antennary complex-type glycans carrying Galβ1–4GlcNAc (lacNAc) and/or GalNAcβ1–4GlcNAc (lacdiNAc) antennae backbones with varying levels of fucose and sialic acid substitution. Interestingly, they all carried a family of Sda (NeuAcα2–3(GalNAcβ1–4)Gal)-containing glycans, which were not identified in the earlier study because of less sensitive methodologies used. Among the three glycodelins, GdA is the most heavily sialylated. Virtually all the sialic acid on GdC is located on the Sda antennae. With the exception of the Sda epitope, the GdC N-glycome appears to be the asialylated counterpart of the GdA/GdF glycomes. Sialidase activity, which may be responsible for transforming GdA/GdF to GdC, was detected in cumulus cells. Both GdA and GdF inhibited the proliferation, induced cell death, and suppressed interleukin-2 secretion of Jurkat cells and peripheral blood mononuclear cells. In contrast, no immunosuppressive effect was observed for GdS and GdC.
doi_str_mv 10.1074/jbc.M807960200
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2685690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819821191</els_id><sourcerecordid>21091266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c632t-98dab9bdc4202f95e59db7a5e05279d020116157086fb239687405514ce047e13</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEotvClSPkgHrLMrZjx74goVIKYhGHUomb5TiTjask3trZRfn3uGRF4YDwxdbM56c387LsBYE1gap8c1vb9RcJlRJAAR5lKwKSFYyT74-zFQAlhaJcnmSnMd5COqUiT7MTomgJwOgq-3zZtminmPs2f-_SO-A4OdPnV_1sfZx7Mzk_3nd_FRrs3ZjgMd_Mw67zdp4wv96HgzuY_ln2pDV9xOfH-yy7-XD57eJjsfl69eni3aawgtGpULIxtaobW1KgreLIVVNXhiNwWqkmzUGIILwCKdqaMiVkVQLnpLQIZYWEnWVvF93dvh6wsclxML3eBTeYMGtvnP67M7pOb_1BUyG5UJAEzo8Cwd_tMU56cNFi35sR_T5qUbG0HUL-C1ICilAhErheQBt8jAHb324I6PugdApKPwSVPrz8c4YH_JhMAl4vQOe23Q8XUNfO2w4HTWWpKdWEgywT9mrBWuO12QYX9c112iADIhiThCVCLgSmSA4Og47W4WixSaJ20o13_zL5EytGtoU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21091266</pqid></control><display><type>article</type><title>Effects of Differential Glycosylation of Glycodelins on Lymphocyte Survival</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lee, Cheuk-Lun ; Pang, Poh-Choo ; Yeung, William S.B. ; Tissot, Bérangère ; Panico, Maria ; Lao, Terence T.H. ; Chu, Ivan K. ; Lee, Kai-Fai ; Chung, Man-Kin ; Lam, Kevin K.W. ; Koistinen, Riitta ; Koistinen, Hannu ; Seppälä, Markku ; Morris, Howard R. ; Dell, Anne ; Chiu, Philip C.N.</creator><creatorcontrib>Lee, Cheuk-Lun ; Pang, Poh-Choo ; Yeung, William S.B. ; Tissot, Bérangère ; Panico, Maria ; Lao, Terence T.H. ; Chu, Ivan K. ; Lee, Kai-Fai ; Chung, Man-Kin ; Lam, Kevin K.W. ; Koistinen, Riitta ; Koistinen, Hannu ; Seppälä, Markku ; Morris, Howard R. ; Dell, Anne ; Chiu, Philip C.N.</creatorcontrib><description>Glycodelin is a human glycoprotein with four reported glycoforms, namely glycodelin-A (GdA), glycodelin-F (GdF), glycodelin-C (GdC), and glycodelin-S (GdS). These glycoforms have the same protein core and appear to differ in their N-glycosylation. The glycosylation of GdA is completely different from that of GdS. GdA inhibits proliferation and induces cell death of T cells. However, the glycosylation and immunomodulating activities of GdF and GdC are not known. This study aimed to use ultra-high sensitivity mass spectrometry to compare the glycomes of GdA, GdC, and GdF and to study the relationship between the immunological activity and glycosylation pattern among glycodelin glycoforms. Using MALDI-TOF strategies, the glycoforms were shown to contain an enormous diversity of bi-, tri-, and tetra-antennary complex-type glycans carrying Galβ1–4GlcNAc (lacNAc) and/or GalNAcβ1–4GlcNAc (lacdiNAc) antennae backbones with varying levels of fucose and sialic acid substitution. Interestingly, they all carried a family of Sda (NeuAcα2–3(GalNAcβ1–4)Gal)-containing glycans, which were not identified in the earlier study because of less sensitive methodologies used. Among the three glycodelins, GdA is the most heavily sialylated. Virtually all the sialic acid on GdC is located on the Sda antennae. With the exception of the Sda epitope, the GdC N-glycome appears to be the asialylated counterpart of the GdA/GdF glycomes. Sialidase activity, which may be responsible for transforming GdA/GdF to GdC, was detected in cumulus cells. Both GdA and GdF inhibited the proliferation, induced cell death, and suppressed interleukin-2 secretion of Jurkat cells and peripheral blood mononuclear cells. In contrast, no immunosuppressive effect was observed for GdS and GdC.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M807960200</identifier><identifier>PMID: 19240032</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Apoptosis ; Carbohydrate Conformation ; Cell Line ; Cell Proliferation ; Cell Survival ; Cumulus Cells - enzymology ; Female ; Gas Chromatography-Mass Spectrometry ; Glycobiology and Extracellular Matrices ; Glycodelin ; Glycoproteins - isolation &amp; purification ; Glycoproteins - metabolism ; Glycosylation ; Humans ; Interleukin-2 - metabolism ; Lectins - metabolism ; Lymphocytes - cytology ; Lymphocytes - metabolism ; N-Acetylneuraminic Acid - metabolism ; Necrosis - pathology ; Neuraminidase - metabolism ; Polysaccharides - chemistry ; Pregnancy Proteins - isolation &amp; purification ; Pregnancy Proteins - metabolism ; Protein Binding ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><ispartof>The Journal of biological chemistry, 2009-05, Vol.284 (22), p.15084-15096</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Copyright © 2009, The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c632t-98dab9bdc4202f95e59db7a5e05279d020116157086fb239687405514ce047e13</citedby><cites>FETCH-LOGICAL-c632t-98dab9bdc4202f95e59db7a5e05279d020116157086fb239687405514ce047e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685690/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685690/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19240032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Cheuk-Lun</creatorcontrib><creatorcontrib>Pang, Poh-Choo</creatorcontrib><creatorcontrib>Yeung, William S.B.</creatorcontrib><creatorcontrib>Tissot, Bérangère</creatorcontrib><creatorcontrib>Panico, Maria</creatorcontrib><creatorcontrib>Lao, Terence T.H.</creatorcontrib><creatorcontrib>Chu, Ivan K.</creatorcontrib><creatorcontrib>Lee, Kai-Fai</creatorcontrib><creatorcontrib>Chung, Man-Kin</creatorcontrib><creatorcontrib>Lam, Kevin K.W.</creatorcontrib><creatorcontrib>Koistinen, Riitta</creatorcontrib><creatorcontrib>Koistinen, Hannu</creatorcontrib><creatorcontrib>Seppälä, Markku</creatorcontrib><creatorcontrib>Morris, Howard R.</creatorcontrib><creatorcontrib>Dell, Anne</creatorcontrib><creatorcontrib>Chiu, Philip C.N.</creatorcontrib><title>Effects of Differential Glycosylation of Glycodelins on Lymphocyte Survival</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Glycodelin is a human glycoprotein with four reported glycoforms, namely glycodelin-A (GdA), glycodelin-F (GdF), glycodelin-C (GdC), and glycodelin-S (GdS). These glycoforms have the same protein core and appear to differ in their N-glycosylation. The glycosylation of GdA is completely different from that of GdS. GdA inhibits proliferation and induces cell death of T cells. However, the glycosylation and immunomodulating activities of GdF and GdC are not known. This study aimed to use ultra-high sensitivity mass spectrometry to compare the glycomes of GdA, GdC, and GdF and to study the relationship between the immunological activity and glycosylation pattern among glycodelin glycoforms. Using MALDI-TOF strategies, the glycoforms were shown to contain an enormous diversity of bi-, tri-, and tetra-antennary complex-type glycans carrying Galβ1–4GlcNAc (lacNAc) and/or GalNAcβ1–4GlcNAc (lacdiNAc) antennae backbones with varying levels of fucose and sialic acid substitution. Interestingly, they all carried a family of Sda (NeuAcα2–3(GalNAcβ1–4)Gal)-containing glycans, which were not identified in the earlier study because of less sensitive methodologies used. Among the three glycodelins, GdA is the most heavily sialylated. Virtually all the sialic acid on GdC is located on the Sda antennae. With the exception of the Sda epitope, the GdC N-glycome appears to be the asialylated counterpart of the GdA/GdF glycomes. Sialidase activity, which may be responsible for transforming GdA/GdF to GdC, was detected in cumulus cells. Both GdA and GdF inhibited the proliferation, induced cell death, and suppressed interleukin-2 secretion of Jurkat cells and peripheral blood mononuclear cells. In contrast, no immunosuppressive effect was observed for GdS and GdC.</description><subject>Apoptosis</subject><subject>Carbohydrate Conformation</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Cumulus Cells - enzymology</subject><subject>Female</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Glycobiology and Extracellular Matrices</subject><subject>Glycodelin</subject><subject>Glycoproteins - isolation &amp; purification</subject><subject>Glycoproteins - metabolism</subject><subject>Glycosylation</subject><subject>Humans</subject><subject>Interleukin-2 - metabolism</subject><subject>Lectins - metabolism</subject><subject>Lymphocytes - cytology</subject><subject>Lymphocytes - metabolism</subject><subject>N-Acetylneuraminic Acid - metabolism</subject><subject>Necrosis - pathology</subject><subject>Neuraminidase - metabolism</subject><subject>Polysaccharides - chemistry</subject><subject>Pregnancy Proteins - isolation &amp; purification</subject><subject>Pregnancy Proteins - metabolism</subject><subject>Protein Binding</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhSMEotvClSPkgHrLMrZjx74goVIKYhGHUomb5TiTjask3trZRfn3uGRF4YDwxdbM56c387LsBYE1gap8c1vb9RcJlRJAAR5lKwKSFYyT74-zFQAlhaJcnmSnMd5COqUiT7MTomgJwOgq-3zZtminmPs2f-_SO-A4OdPnV_1sfZx7Mzk_3nd_FRrs3ZjgMd_Mw67zdp4wv96HgzuY_ln2pDV9xOfH-yy7-XD57eJjsfl69eni3aawgtGpULIxtaobW1KgreLIVVNXhiNwWqkmzUGIILwCKdqaMiVkVQLnpLQIZYWEnWVvF93dvh6wsclxML3eBTeYMGtvnP67M7pOb_1BUyG5UJAEzo8Cwd_tMU56cNFi35sR_T5qUbG0HUL-C1ICilAhErheQBt8jAHb324I6PugdApKPwSVPrz8c4YH_JhMAl4vQOe23Q8XUNfO2w4HTWWpKdWEgywT9mrBWuO12QYX9c112iADIhiThCVCLgSmSA4Og47W4WixSaJ20o13_zL5EytGtoU</recordid><startdate>20090529</startdate><enddate>20090529</enddate><creator>Lee, Cheuk-Lun</creator><creator>Pang, Poh-Choo</creator><creator>Yeung, William S.B.</creator><creator>Tissot, Bérangère</creator><creator>Panico, Maria</creator><creator>Lao, Terence T.H.</creator><creator>Chu, Ivan K.</creator><creator>Lee, Kai-Fai</creator><creator>Chung, Man-Kin</creator><creator>Lam, Kevin K.W.</creator><creator>Koistinen, Riitta</creator><creator>Koistinen, Hannu</creator><creator>Seppälä, Markku</creator><creator>Morris, Howard R.</creator><creator>Dell, Anne</creator><creator>Chiu, Philip C.N.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090529</creationdate><title>Effects of Differential Glycosylation of Glycodelins on Lymphocyte Survival</title><author>Lee, Cheuk-Lun ; Pang, Poh-Choo ; Yeung, William S.B. ; Tissot, Bérangère ; Panico, Maria ; Lao, Terence T.H. ; Chu, Ivan K. ; Lee, Kai-Fai ; Chung, Man-Kin ; Lam, Kevin K.W. ; Koistinen, Riitta ; Koistinen, Hannu ; Seppälä, Markku ; Morris, Howard R. ; Dell, Anne ; Chiu, Philip C.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c632t-98dab9bdc4202f95e59db7a5e05279d020116157086fb239687405514ce047e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Apoptosis</topic><topic>Carbohydrate Conformation</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Cumulus Cells - enzymology</topic><topic>Female</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Glycobiology and Extracellular Matrices</topic><topic>Glycodelin</topic><topic>Glycoproteins - isolation &amp; purification</topic><topic>Glycoproteins - metabolism</topic><topic>Glycosylation</topic><topic>Humans</topic><topic>Interleukin-2 - metabolism</topic><topic>Lectins - metabolism</topic><topic>Lymphocytes - cytology</topic><topic>Lymphocytes - metabolism</topic><topic>N-Acetylneuraminic Acid - metabolism</topic><topic>Necrosis - pathology</topic><topic>Neuraminidase - metabolism</topic><topic>Polysaccharides - chemistry</topic><topic>Pregnancy Proteins - isolation &amp; purification</topic><topic>Pregnancy Proteins - metabolism</topic><topic>Protein Binding</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Cheuk-Lun</creatorcontrib><creatorcontrib>Pang, Poh-Choo</creatorcontrib><creatorcontrib>Yeung, William S.B.</creatorcontrib><creatorcontrib>Tissot, Bérangère</creatorcontrib><creatorcontrib>Panico, Maria</creatorcontrib><creatorcontrib>Lao, Terence T.H.</creatorcontrib><creatorcontrib>Chu, Ivan K.</creatorcontrib><creatorcontrib>Lee, Kai-Fai</creatorcontrib><creatorcontrib>Chung, Man-Kin</creatorcontrib><creatorcontrib>Lam, Kevin K.W.</creatorcontrib><creatorcontrib>Koistinen, Riitta</creatorcontrib><creatorcontrib>Koistinen, Hannu</creatorcontrib><creatorcontrib>Seppälä, Markku</creatorcontrib><creatorcontrib>Morris, Howard R.</creatorcontrib><creatorcontrib>Dell, Anne</creatorcontrib><creatorcontrib>Chiu, Philip C.N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Cheuk-Lun</au><au>Pang, Poh-Choo</au><au>Yeung, William S.B.</au><au>Tissot, Bérangère</au><au>Panico, Maria</au><au>Lao, Terence T.H.</au><au>Chu, Ivan K.</au><au>Lee, Kai-Fai</au><au>Chung, Man-Kin</au><au>Lam, Kevin K.W.</au><au>Koistinen, Riitta</au><au>Koistinen, Hannu</au><au>Seppälä, Markku</au><au>Morris, Howard R.</au><au>Dell, Anne</au><au>Chiu, Philip C.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Differential Glycosylation of Glycodelins on Lymphocyte Survival</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-05-29</date><risdate>2009</risdate><volume>284</volume><issue>22</issue><spage>15084</spage><epage>15096</epage><pages>15084-15096</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Glycodelin is a human glycoprotein with four reported glycoforms, namely glycodelin-A (GdA), glycodelin-F (GdF), glycodelin-C (GdC), and glycodelin-S (GdS). These glycoforms have the same protein core and appear to differ in their N-glycosylation. The glycosylation of GdA is completely different from that of GdS. GdA inhibits proliferation and induces cell death of T cells. However, the glycosylation and immunomodulating activities of GdF and GdC are not known. This study aimed to use ultra-high sensitivity mass spectrometry to compare the glycomes of GdA, GdC, and GdF and to study the relationship between the immunological activity and glycosylation pattern among glycodelin glycoforms. Using MALDI-TOF strategies, the glycoforms were shown to contain an enormous diversity of bi-, tri-, and tetra-antennary complex-type glycans carrying Galβ1–4GlcNAc (lacNAc) and/or GalNAcβ1–4GlcNAc (lacdiNAc) antennae backbones with varying levels of fucose and sialic acid substitution. Interestingly, they all carried a family of Sda (NeuAcα2–3(GalNAcβ1–4)Gal)-containing glycans, which were not identified in the earlier study because of less sensitive methodologies used. Among the three glycodelins, GdA is the most heavily sialylated. Virtually all the sialic acid on GdC is located on the Sda antennae. With the exception of the Sda epitope, the GdC N-glycome appears to be the asialylated counterpart of the GdA/GdF glycomes. Sialidase activity, which may be responsible for transforming GdA/GdF to GdC, was detected in cumulus cells. Both GdA and GdF inhibited the proliferation, induced cell death, and suppressed interleukin-2 secretion of Jurkat cells and peripheral blood mononuclear cells. In contrast, no immunosuppressive effect was observed for GdS and GdC.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19240032</pmid><doi>10.1074/jbc.M807960200</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2009-05, Vol.284 (22), p.15084-15096
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2685690
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Apoptosis
Carbohydrate Conformation
Cell Line
Cell Proliferation
Cell Survival
Cumulus Cells - enzymology
Female
Gas Chromatography-Mass Spectrometry
Glycobiology and Extracellular Matrices
Glycodelin
Glycoproteins - isolation & purification
Glycoproteins - metabolism
Glycosylation
Humans
Interleukin-2 - metabolism
Lectins - metabolism
Lymphocytes - cytology
Lymphocytes - metabolism
N-Acetylneuraminic Acid - metabolism
Necrosis - pathology
Neuraminidase - metabolism
Polysaccharides - chemistry
Pregnancy Proteins - isolation & purification
Pregnancy Proteins - metabolism
Protein Binding
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
title Effects of Differential Glycosylation of Glycodelins on Lymphocyte Survival
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Differential%20Glycosylation%20of%20Glycodelins%20on%20Lymphocyte%20Survival&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Lee,%20Cheuk-Lun&rft.date=2009-05-29&rft.volume=284&rft.issue=22&rft.spage=15084&rft.epage=15096&rft.pages=15084-15096&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M807960200&rft_dat=%3Cproquest_pubme%3E21091266%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21091266&rft_id=info:pmid/19240032&rft_els_id=S0021925819821191&rfr_iscdi=true