Analysis of structure and function of the giant protein Pf332 in Plasmodium falciparum

Virulence of Plasmodium falciparum, the most lethal parasitic disease in humans, results in part from adhesiveness and increased rigidity of infected erythrocytes. Pf332 is trafficked to the parasite-infected erythrocyte via Maurer's clefts, structures for protein sorting and export in the host...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2009-01, Vol.71 (1), p.48-65
Hauptverfasser: Hodder, Anthony N, Maier, Alexander G, Rug, Melanie, Brown, Monica, Hommel, Mirja, Pantic, Ivan, Puig-de-Morales-Marinkovic, Marina, Smith, Brian, Triglia, Tony, Beeson, James, Cowman, Alan F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 1
container_start_page 48
container_title Molecular microbiology
container_volume 71
creator Hodder, Anthony N
Maier, Alexander G
Rug, Melanie
Brown, Monica
Hommel, Mirja
Pantic, Ivan
Puig-de-Morales-Marinkovic, Marina
Smith, Brian
Triglia, Tony
Beeson, James
Cowman, Alan F
description Virulence of Plasmodium falciparum, the most lethal parasitic disease in humans, results in part from adhesiveness and increased rigidity of infected erythrocytes. Pf332 is trafficked to the parasite-infected erythrocyte via Maurer's clefts, structures for protein sorting and export in the host erythrocyte. This protein has a domain similar to the Duffy-binding-like (DBL) domain, which functions by binding to receptors for adherence and invasion. To address structure of the Pf332 DBL domain, we expressed this region, and validated its fold on the basis of the disulphide bond pattern, which conformed to the generic pattern for DBL domains. The modelled structure for Pf332 DBL had differences compared with the erythrocyte-binding region of the αDBL domain of Plasmodium knowlesi Duffy-binding protein (Pkα-DBL). We addressed the function of Pf332 by constructing parasites that either lack expression of the protein or express an altered form. We found no evidence that Pf332 is involved in cytoadhesion or merozoite invasion. Truncation of Pf332 had a significant effect on deformability of the P. falciparum-infected erythrocyte, while loss of the full protein deletion did not. Our data suggest that Pf332 may contribute to the overall deformability of the P. falciparum-infected erythrocyte by anchoring and scaffolding.
doi_str_mv 10.1111/j.1365-2958.2008.06508.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2680261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20303312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5848-155e447391b752fee594f1d1b919750610fd5dbb5064f00cba8a2e630b691d913</originalsourceid><addsrcrecordid>eNqNkl1vFCEUhidGY9fqX1BionezHmBghwtNmsaPJm000RrvCMPAls0MbGFGu_9ecDfrx5VcwCHneQ8HXqoKYVjiPF5tlphyVhPB2iUBaJfAWZ7v7lWLY-J-tQDBoKYt-XZSPUppA4ApcPqwOsECYNVguqi-nnk17JJLKFiUpjjraY4GKd8jO3s9ueBLZroxaO2Un9A2hsk4jz5ZSgkqwaDSGHo3j8iqQbutivP4uHqQN8k8Oayn1fW7t1_OP9SXH99fnJ9d1pq1TVtjxkzTrKjA3YoRawwTjcU97gQWKwYcg-1Z33U5bCyA7lSriOEUOi5wLzA9rd7s627nbjS9Nn6KapDb6EYVdzIoJ__OeHcj1-G7JLwFwkuBl4cCMdzOJk1ydEmbYVDehDlJAhQoxSSDz_8BN2GO-fGSxIKzfAlSoHYP6RhSisYeO8Egi3NyI4tBshgki3Pyl3PyLkuf_nmT38KDVRl4cQBU0mqwUXnt0pEj2WxO2yZzr_fcDzeY3X83IK-uLkqU9c_2equCVOuYz7j-TMrXwWzFMBX0J8vtvRk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196547322</pqid></control><display><type>article</type><title>Analysis of structure and function of the giant protein Pf332 in Plasmodium falciparum</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Hodder, Anthony N ; Maier, Alexander G ; Rug, Melanie ; Brown, Monica ; Hommel, Mirja ; Pantic, Ivan ; Puig-de-Morales-Marinkovic, Marina ; Smith, Brian ; Triglia, Tony ; Beeson, James ; Cowman, Alan F</creator><creatorcontrib>Hodder, Anthony N ; Maier, Alexander G ; Rug, Melanie ; Brown, Monica ; Hommel, Mirja ; Pantic, Ivan ; Puig-de-Morales-Marinkovic, Marina ; Smith, Brian ; Triglia, Tony ; Beeson, James ; Cowman, Alan F</creatorcontrib><description>Virulence of Plasmodium falciparum, the most lethal parasitic disease in humans, results in part from adhesiveness and increased rigidity of infected erythrocytes. Pf332 is trafficked to the parasite-infected erythrocyte via Maurer's clefts, structures for protein sorting and export in the host erythrocyte. This protein has a domain similar to the Duffy-binding-like (DBL) domain, which functions by binding to receptors for adherence and invasion. To address structure of the Pf332 DBL domain, we expressed this region, and validated its fold on the basis of the disulphide bond pattern, which conformed to the generic pattern for DBL domains. The modelled structure for Pf332 DBL had differences compared with the erythrocyte-binding region of the αDBL domain of Plasmodium knowlesi Duffy-binding protein (Pkα-DBL). We addressed the function of Pf332 by constructing parasites that either lack expression of the protein or express an altered form. We found no evidence that Pf332 is involved in cytoadhesion or merozoite invasion. Truncation of Pf332 had a significant effect on deformability of the P. falciparum-infected erythrocyte, while loss of the full protein deletion did not. Our data suggest that Pf332 may contribute to the overall deformability of the P. falciparum-infected erythrocyte by anchoring and scaffolding.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2008.06508.x</identifier><identifier>PMID: 19007413</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Animals ; Antibodies, Protozoan - immunology ; Antibodies, Protozoan - metabolism ; Antigens, Protozoan - metabolism ; Antigens, Protozoan - physiology ; Binding Sites ; Biochemistry ; Biological and medical sciences ; Erythrocytes ; Erythrocytes - parasitology ; Fundamental and applied biological sciences. Psychology ; Gene Deletion ; Humans ; Life cycle. Host-agent relationship. Pathogenesis ; Merozoites - physiology ; Microbiology ; Models, Molecular ; Parasitic protozoa ; Peptide Mapping ; Plasmodium falciparum ; Plasmodium falciparum - metabolism ; Plasmodium falciparum - physiology ; Plasmodium knowlesi ; Protein Folding ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Proteins ; Protozoa ; Protozoan Proteins - metabolism ; Protozoan Proteins - physiology ; Structure-Activity Relationship</subject><ispartof>Molecular microbiology, 2009-01, Vol.71 (1), p.48-65</ispartof><rights>2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Jan 2009</rights><rights>Journal compilation © 2008 Blackwell Publishing 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5848-155e447391b752fee594f1d1b919750610fd5dbb5064f00cba8a2e630b691d913</citedby><cites>FETCH-LOGICAL-c5848-155e447391b752fee594f1d1b919750610fd5dbb5064f00cba8a2e630b691d913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2008.06508.x$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2008.06508.x$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20956384$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19007413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hodder, Anthony N</creatorcontrib><creatorcontrib>Maier, Alexander G</creatorcontrib><creatorcontrib>Rug, Melanie</creatorcontrib><creatorcontrib>Brown, Monica</creatorcontrib><creatorcontrib>Hommel, Mirja</creatorcontrib><creatorcontrib>Pantic, Ivan</creatorcontrib><creatorcontrib>Puig-de-Morales-Marinkovic, Marina</creatorcontrib><creatorcontrib>Smith, Brian</creatorcontrib><creatorcontrib>Triglia, Tony</creatorcontrib><creatorcontrib>Beeson, James</creatorcontrib><creatorcontrib>Cowman, Alan F</creatorcontrib><title>Analysis of structure and function of the giant protein Pf332 in Plasmodium falciparum</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Virulence of Plasmodium falciparum, the most lethal parasitic disease in humans, results in part from adhesiveness and increased rigidity of infected erythrocytes. Pf332 is trafficked to the parasite-infected erythrocyte via Maurer's clefts, structures for protein sorting and export in the host erythrocyte. This protein has a domain similar to the Duffy-binding-like (DBL) domain, which functions by binding to receptors for adherence and invasion. To address structure of the Pf332 DBL domain, we expressed this region, and validated its fold on the basis of the disulphide bond pattern, which conformed to the generic pattern for DBL domains. The modelled structure for Pf332 DBL had differences compared with the erythrocyte-binding region of the αDBL domain of Plasmodium knowlesi Duffy-binding protein (Pkα-DBL). We addressed the function of Pf332 by constructing parasites that either lack expression of the protein or express an altered form. We found no evidence that Pf332 is involved in cytoadhesion or merozoite invasion. Truncation of Pf332 had a significant effect on deformability of the P. falciparum-infected erythrocyte, while loss of the full protein deletion did not. Our data suggest that Pf332 may contribute to the overall deformability of the P. falciparum-infected erythrocyte by anchoring and scaffolding.</description><subject>Animals</subject><subject>Antibodies, Protozoan - immunology</subject><subject>Antibodies, Protozoan - metabolism</subject><subject>Antigens, Protozoan - metabolism</subject><subject>Antigens, Protozoan - physiology</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Erythrocytes</subject><subject>Erythrocytes - parasitology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Deletion</subject><subject>Humans</subject><subject>Life cycle. Host-agent relationship. Pathogenesis</subject><subject>Merozoites - physiology</subject><subject>Microbiology</subject><subject>Models, Molecular</subject><subject>Parasitic protozoa</subject><subject>Peptide Mapping</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Plasmodium falciparum - physiology</subject><subject>Plasmodium knowlesi</subject><subject>Protein Folding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Protozoa</subject><subject>Protozoan Proteins - metabolism</subject><subject>Protozoan Proteins - physiology</subject><subject>Structure-Activity Relationship</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqNkl1vFCEUhidGY9fqX1BionezHmBghwtNmsaPJm000RrvCMPAls0MbGFGu_9ecDfrx5VcwCHneQ8HXqoKYVjiPF5tlphyVhPB2iUBaJfAWZ7v7lWLY-J-tQDBoKYt-XZSPUppA4ApcPqwOsECYNVguqi-nnk17JJLKFiUpjjraY4GKd8jO3s9ueBLZroxaO2Un9A2hsk4jz5ZSgkqwaDSGHo3j8iqQbutivP4uHqQN8k8Oayn1fW7t1_OP9SXH99fnJ9d1pq1TVtjxkzTrKjA3YoRawwTjcU97gQWKwYcg-1Z33U5bCyA7lSriOEUOi5wLzA9rd7s627nbjS9Nn6KapDb6EYVdzIoJ__OeHcj1-G7JLwFwkuBl4cCMdzOJk1ydEmbYVDehDlJAhQoxSSDz_8BN2GO-fGSxIKzfAlSoHYP6RhSisYeO8Egi3NyI4tBshgki3Pyl3PyLkuf_nmT38KDVRl4cQBU0mqwUXnt0pEj2WxO2yZzr_fcDzeY3X83IK-uLkqU9c_2equCVOuYz7j-TMrXwWzFMBX0J8vtvRk</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Hodder, Anthony N</creator><creator>Maier, Alexander G</creator><creator>Rug, Melanie</creator><creator>Brown, Monica</creator><creator>Hommel, Mirja</creator><creator>Pantic, Ivan</creator><creator>Puig-de-Morales-Marinkovic, Marina</creator><creator>Smith, Brian</creator><creator>Triglia, Tony</creator><creator>Beeson, James</creator><creator>Cowman, Alan F</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>24P</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>200901</creationdate><title>Analysis of structure and function of the giant protein Pf332 in Plasmodium falciparum</title><author>Hodder, Anthony N ; Maier, Alexander G ; Rug, Melanie ; Brown, Monica ; Hommel, Mirja ; Pantic, Ivan ; Puig-de-Morales-Marinkovic, Marina ; Smith, Brian ; Triglia, Tony ; Beeson, James ; Cowman, Alan F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5848-155e447391b752fee594f1d1b919750610fd5dbb5064f00cba8a2e630b691d913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Antibodies, Protozoan - immunology</topic><topic>Antibodies, Protozoan - metabolism</topic><topic>Antigens, Protozoan - metabolism</topic><topic>Antigens, Protozoan - physiology</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Erythrocytes</topic><topic>Erythrocytes - parasitology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Deletion</topic><topic>Humans</topic><topic>Life cycle. Host-agent relationship. Pathogenesis</topic><topic>Merozoites - physiology</topic><topic>Microbiology</topic><topic>Models, Molecular</topic><topic>Parasitic protozoa</topic><topic>Peptide Mapping</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Plasmodium falciparum - physiology</topic><topic>Plasmodium knowlesi</topic><topic>Protein Folding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Protozoa</topic><topic>Protozoan Proteins - metabolism</topic><topic>Protozoan Proteins - physiology</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hodder, Anthony N</creatorcontrib><creatorcontrib>Maier, Alexander G</creatorcontrib><creatorcontrib>Rug, Melanie</creatorcontrib><creatorcontrib>Brown, Monica</creatorcontrib><creatorcontrib>Hommel, Mirja</creatorcontrib><creatorcontrib>Pantic, Ivan</creatorcontrib><creatorcontrib>Puig-de-Morales-Marinkovic, Marina</creatorcontrib><creatorcontrib>Smith, Brian</creatorcontrib><creatorcontrib>Triglia, Tony</creatorcontrib><creatorcontrib>Beeson, James</creatorcontrib><creatorcontrib>Cowman, Alan F</creatorcontrib><collection>AGRIS</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hodder, Anthony N</au><au>Maier, Alexander G</au><au>Rug, Melanie</au><au>Brown, Monica</au><au>Hommel, Mirja</au><au>Pantic, Ivan</au><au>Puig-de-Morales-Marinkovic, Marina</au><au>Smith, Brian</au><au>Triglia, Tony</au><au>Beeson, James</au><au>Cowman, Alan F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of structure and function of the giant protein Pf332 in Plasmodium falciparum</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2009-01</date><risdate>2009</risdate><volume>71</volume><issue>1</issue><spage>48</spage><epage>65</epage><pages>48-65</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Virulence of Plasmodium falciparum, the most lethal parasitic disease in humans, results in part from adhesiveness and increased rigidity of infected erythrocytes. Pf332 is trafficked to the parasite-infected erythrocyte via Maurer's clefts, structures for protein sorting and export in the host erythrocyte. This protein has a domain similar to the Duffy-binding-like (DBL) domain, which functions by binding to receptors for adherence and invasion. To address structure of the Pf332 DBL domain, we expressed this region, and validated its fold on the basis of the disulphide bond pattern, which conformed to the generic pattern for DBL domains. The modelled structure for Pf332 DBL had differences compared with the erythrocyte-binding region of the αDBL domain of Plasmodium knowlesi Duffy-binding protein (Pkα-DBL). We addressed the function of Pf332 by constructing parasites that either lack expression of the protein or express an altered form. We found no evidence that Pf332 is involved in cytoadhesion or merozoite invasion. Truncation of Pf332 had a significant effect on deformability of the P. falciparum-infected erythrocyte, while loss of the full protein deletion did not. Our data suggest that Pf332 may contribute to the overall deformability of the P. falciparum-infected erythrocyte by anchoring and scaffolding.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>19007413</pmid><doi>10.1111/j.1365-2958.2008.06508.x</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2009-01, Vol.71 (1), p.48-65
issn 0950-382X
1365-2958
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2680261
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Animals
Antibodies, Protozoan - immunology
Antibodies, Protozoan - metabolism
Antigens, Protozoan - metabolism
Antigens, Protozoan - physiology
Binding Sites
Biochemistry
Biological and medical sciences
Erythrocytes
Erythrocytes - parasitology
Fundamental and applied biological sciences. Psychology
Gene Deletion
Humans
Life cycle. Host-agent relationship. Pathogenesis
Merozoites - physiology
Microbiology
Models, Molecular
Parasitic protozoa
Peptide Mapping
Plasmodium falciparum
Plasmodium falciparum - metabolism
Plasmodium falciparum - physiology
Plasmodium knowlesi
Protein Folding
Protein Interaction Domains and Motifs
Protein Structure, Tertiary
Proteins
Protozoa
Protozoan Proteins - metabolism
Protozoan Proteins - physiology
Structure-Activity Relationship
title Analysis of structure and function of the giant protein Pf332 in Plasmodium falciparum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20structure%20and%20function%20of%20the%20giant%20protein%20Pf332%20in%20Plasmodium%20falciparum&rft.jtitle=Molecular%20microbiology&rft.au=Hodder,%20Anthony%20N&rft.date=2009-01&rft.volume=71&rft.issue=1&rft.spage=48&rft.epage=65&rft.pages=48-65&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2008.06508.x&rft_dat=%3Cproquest_pubme%3E20303312%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196547322&rft_id=info:pmid/19007413&rfr_iscdi=true