The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging

Changes in arterial wall composition and function underlie all forms of vascular disease. The fundamental structural and functional unit of the aortic wall is the medial lamellar unit (MLU). While the basic composition and organization of the MLU is known, three-dimensional (3D) microstructural deta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Matrix biology 2008-04, Vol.27 (3), p.171-181
Hauptverfasser: O'Connell, Mary K., Murthy, Sushila, Phan, Samson, Xu, Chengpei, Buchanan, JoAnn, Spilker, Ryan, Dalman, Ronald L., Zarins, Christopher K., Denk, Winfried, Taylor, Charles A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue 3
container_start_page 171
container_title Matrix biology
container_volume 27
creator O'Connell, Mary K.
Murthy, Sushila
Phan, Samson
Xu, Chengpei
Buchanan, JoAnn
Spilker, Ryan
Dalman, Ronald L.
Zarins, Christopher K.
Denk, Winfried
Taylor, Charles A.
description Changes in arterial wall composition and function underlie all forms of vascular disease. The fundamental structural and functional unit of the aortic wall is the medial lamellar unit (MLU). While the basic composition and organization of the MLU is known, three-dimensional (3D) microstructural details are tenuous, due (in part) to lack of three-dimensional data at micro- and nano-scales. We applied novel electron and confocal microscopy techniques to obtain 3D volumetric information of aortic medial microstructure at micro- and nano-scales with all constituents present. For the rat abdominal aorta, we show that medial elastin has three primary forms: with approximately 71% of total elastin as thick, continuous lamellar sheets, 27% as thin, protruding interlamellar elastin fibers (IEFs), and 2% as thick radial struts. Elastin pores are not simply holes in lamellar sheets, but are indented and gusseted openings in lamellae. Smooth muscle cells (SMCs) weave throughout the interlamellar elastin framework, with cytoplasmic extensions abutting IEFs, resulting in approximately 20° radial tilt (relative to the lumen surface) of elliptical SMC nuclei. Collagen fibers are organized as large, parallel bundles tightly enveloping SMC nuclei. Quantification of the orientation of collagen bundles, SMC nuclei, and IEFs reveal that all three primary medial constituents have predominantly circumferential orientation, correlating with reported circumferentially dominant values of physiological stress, collagen fiber recruitment, and tissue stiffness. This high resolution three-dimensional view of the aortic media reveals MLU microstructure details that suggest a highly complex and integrated mural organization that correlates with aortic mechanical properties.
doi_str_mv 10.1016/j.matbio.2007.10.008
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2679973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0945053X0700145X</els_id><sourcerecordid>70406276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-92ce8fcac21c0d73268ac85dc0646d50629c01589aa96f84ddfbef656d3f6ecc3</originalsourceid><addsrcrecordid>eNp9kctuFDEQRa2IKBkCf4CQV-x6cL_82CChhASkSNkEiZ3lKVfPeNRtD7Y7Uv6Bj8atGRHYsLJUPnXrVl1C3tVsXbOaf9yvJ5M3LqwbxkQprRmTZ2RV91xVtWTNK7Jiqusr1rc_LsnrlPaMsa4T8oJc1rLppBLdivx63CHNu4hYWTehTy54M9LJQQwVNd5Sb3xIOc6Q54g0DIVGakLMDuiE1hV6NBOOo4l09i6XokkFtXROzm9pe0Mh-CFAARc9HBFyDP44I0E4PFM3mW1h35DzwYwJ357eK_L99svj9dfq_uHu2_Xn-wr6RuRKNYByAANNDcyKtuHSgOwtMN5x2zPeKGB1L5Uxig-ys3bY4MB7btuBI0B7RT4ddQ_zpqwA6HM0oz7E4iM-62Cc_vfHu53ehifdcKGUaIvAh5NADD9nTFlPLsFyA49hTlqwrrgQvIDdEVxWTRGHP0NqppcY9V4fY9RLjEu1xFja3v9t8KXplNvLBljO9OQw6gQOPZQ8YjmvtsH9f8JvK7C1qw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70406276</pqid></control><display><type>article</type><title>The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>O'Connell, Mary K. ; Murthy, Sushila ; Phan, Samson ; Xu, Chengpei ; Buchanan, JoAnn ; Spilker, Ryan ; Dalman, Ronald L. ; Zarins, Christopher K. ; Denk, Winfried ; Taylor, Charles A.</creator><creatorcontrib>O'Connell, Mary K. ; Murthy, Sushila ; Phan, Samson ; Xu, Chengpei ; Buchanan, JoAnn ; Spilker, Ryan ; Dalman, Ronald L. ; Zarins, Christopher K. ; Denk, Winfried ; Taylor, Charles A.</creatorcontrib><description>Changes in arterial wall composition and function underlie all forms of vascular disease. The fundamental structural and functional unit of the aortic wall is the medial lamellar unit (MLU). While the basic composition and organization of the MLU is known, three-dimensional (3D) microstructural details are tenuous, due (in part) to lack of three-dimensional data at micro- and nano-scales. We applied novel electron and confocal microscopy techniques to obtain 3D volumetric information of aortic medial microstructure at micro- and nano-scales with all constituents present. For the rat abdominal aorta, we show that medial elastin has three primary forms: with approximately 71% of total elastin as thick, continuous lamellar sheets, 27% as thin, protruding interlamellar elastin fibers (IEFs), and 2% as thick radial struts. Elastin pores are not simply holes in lamellar sheets, but are indented and gusseted openings in lamellae. Smooth muscle cells (SMCs) weave throughout the interlamellar elastin framework, with cytoplasmic extensions abutting IEFs, resulting in approximately 20° radial tilt (relative to the lumen surface) of elliptical SMC nuclei. Collagen fibers are organized as large, parallel bundles tightly enveloping SMC nuclei. Quantification of the orientation of collagen bundles, SMC nuclei, and IEFs reveal that all three primary medial constituents have predominantly circumferential orientation, correlating with reported circumferentially dominant values of physiological stress, collagen fiber recruitment, and tissue stiffness. This high resolution three-dimensional view of the aortic media reveals MLU microstructure details that suggest a highly complex and integrated mural organization that correlates with aortic mechanical properties.</description><identifier>ISSN: 0945-053X</identifier><identifier>EISSN: 1569-1802</identifier><identifier>DOI: 10.1016/j.matbio.2007.10.008</identifier><identifier>PMID: 18248974</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Aorta ; Aorta - pathology ; Aorta, Abdominal - pathology ; Cell Nucleus - metabolism ; Collagen ; Collagen - chemistry ; Elastin ; Elastin - metabolism ; Extracellular matrix ; Imaging, Three-Dimensional - methods ; Male ; Medial lamellar unit ; Microscopy, Confocal - methods ; Microscopy, Electron - methods ; Microstructure ; Models, Biological ; Myocytes, Smooth Muscle - cytology ; Nanotechnology - methods ; Rats ; Rats, Sprague-Dawley ; Smooth muscle cells</subject><ispartof>Matrix biology, 2008-04, Vol.27 (3), p.171-181</ispartof><rights>2007 International Society of Matrix Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-92ce8fcac21c0d73268ac85dc0646d50629c01589aa96f84ddfbef656d3f6ecc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matbio.2007.10.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18248974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Connell, Mary K.</creatorcontrib><creatorcontrib>Murthy, Sushila</creatorcontrib><creatorcontrib>Phan, Samson</creatorcontrib><creatorcontrib>Xu, Chengpei</creatorcontrib><creatorcontrib>Buchanan, JoAnn</creatorcontrib><creatorcontrib>Spilker, Ryan</creatorcontrib><creatorcontrib>Dalman, Ronald L.</creatorcontrib><creatorcontrib>Zarins, Christopher K.</creatorcontrib><creatorcontrib>Denk, Winfried</creatorcontrib><creatorcontrib>Taylor, Charles A.</creatorcontrib><title>The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging</title><title>Matrix biology</title><addtitle>Matrix Biol</addtitle><description>Changes in arterial wall composition and function underlie all forms of vascular disease. The fundamental structural and functional unit of the aortic wall is the medial lamellar unit (MLU). While the basic composition and organization of the MLU is known, three-dimensional (3D) microstructural details are tenuous, due (in part) to lack of three-dimensional data at micro- and nano-scales. We applied novel electron and confocal microscopy techniques to obtain 3D volumetric information of aortic medial microstructure at micro- and nano-scales with all constituents present. For the rat abdominal aorta, we show that medial elastin has three primary forms: with approximately 71% of total elastin as thick, continuous lamellar sheets, 27% as thin, protruding interlamellar elastin fibers (IEFs), and 2% as thick radial struts. Elastin pores are not simply holes in lamellar sheets, but are indented and gusseted openings in lamellae. Smooth muscle cells (SMCs) weave throughout the interlamellar elastin framework, with cytoplasmic extensions abutting IEFs, resulting in approximately 20° radial tilt (relative to the lumen surface) of elliptical SMC nuclei. Collagen fibers are organized as large, parallel bundles tightly enveloping SMC nuclei. Quantification of the orientation of collagen bundles, SMC nuclei, and IEFs reveal that all three primary medial constituents have predominantly circumferential orientation, correlating with reported circumferentially dominant values of physiological stress, collagen fiber recruitment, and tissue stiffness. This high resolution three-dimensional view of the aortic media reveals MLU microstructure details that suggest a highly complex and integrated mural organization that correlates with aortic mechanical properties.</description><subject>Animals</subject><subject>Aorta</subject><subject>Aorta - pathology</subject><subject>Aorta, Abdominal - pathology</subject><subject>Cell Nucleus - metabolism</subject><subject>Collagen</subject><subject>Collagen - chemistry</subject><subject>Elastin</subject><subject>Elastin - metabolism</subject><subject>Extracellular matrix</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Male</subject><subject>Medial lamellar unit</subject><subject>Microscopy, Confocal - methods</subject><subject>Microscopy, Electron - methods</subject><subject>Microstructure</subject><subject>Models, Biological</subject><subject>Myocytes, Smooth Muscle - cytology</subject><subject>Nanotechnology - methods</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Smooth muscle cells</subject><issn>0945-053X</issn><issn>1569-1802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctuFDEQRa2IKBkCf4CQV-x6cL_82CChhASkSNkEiZ3lKVfPeNRtD7Y7Uv6Bj8atGRHYsLJUPnXrVl1C3tVsXbOaf9yvJ5M3LqwbxkQprRmTZ2RV91xVtWTNK7Jiqusr1rc_LsnrlPaMsa4T8oJc1rLppBLdivx63CHNu4hYWTehTy54M9LJQQwVNd5Sb3xIOc6Q54g0DIVGakLMDuiE1hV6NBOOo4l09i6XokkFtXROzm9pe0Mh-CFAARc9HBFyDP44I0E4PFM3mW1h35DzwYwJ357eK_L99svj9dfq_uHu2_Xn-wr6RuRKNYByAANNDcyKtuHSgOwtMN5x2zPeKGB1L5Uxig-ys3bY4MB7btuBI0B7RT4ddQ_zpqwA6HM0oz7E4iM-62Cc_vfHu53ehifdcKGUaIvAh5NADD9nTFlPLsFyA49hTlqwrrgQvIDdEVxWTRGHP0NqppcY9V4fY9RLjEu1xFja3v9t8KXplNvLBljO9OQw6gQOPZQ8YjmvtsH9f8JvK7C1qw</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>O'Connell, Mary K.</creator><creator>Murthy, Sushila</creator><creator>Phan, Samson</creator><creator>Xu, Chengpei</creator><creator>Buchanan, JoAnn</creator><creator>Spilker, Ryan</creator><creator>Dalman, Ronald L.</creator><creator>Zarins, Christopher K.</creator><creator>Denk, Winfried</creator><creator>Taylor, Charles A.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080401</creationdate><title>The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging</title><author>O'Connell, Mary K. ; Murthy, Sushila ; Phan, Samson ; Xu, Chengpei ; Buchanan, JoAnn ; Spilker, Ryan ; Dalman, Ronald L. ; Zarins, Christopher K. ; Denk, Winfried ; Taylor, Charles A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-92ce8fcac21c0d73268ac85dc0646d50629c01589aa96f84ddfbef656d3f6ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Aorta</topic><topic>Aorta - pathology</topic><topic>Aorta, Abdominal - pathology</topic><topic>Cell Nucleus - metabolism</topic><topic>Collagen</topic><topic>Collagen - chemistry</topic><topic>Elastin</topic><topic>Elastin - metabolism</topic><topic>Extracellular matrix</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Male</topic><topic>Medial lamellar unit</topic><topic>Microscopy, Confocal - methods</topic><topic>Microscopy, Electron - methods</topic><topic>Microstructure</topic><topic>Models, Biological</topic><topic>Myocytes, Smooth Muscle - cytology</topic><topic>Nanotechnology - methods</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Smooth muscle cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Connell, Mary K.</creatorcontrib><creatorcontrib>Murthy, Sushila</creatorcontrib><creatorcontrib>Phan, Samson</creatorcontrib><creatorcontrib>Xu, Chengpei</creatorcontrib><creatorcontrib>Buchanan, JoAnn</creatorcontrib><creatorcontrib>Spilker, Ryan</creatorcontrib><creatorcontrib>Dalman, Ronald L.</creatorcontrib><creatorcontrib>Zarins, Christopher K.</creatorcontrib><creatorcontrib>Denk, Winfried</creatorcontrib><creatorcontrib>Taylor, Charles A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Matrix biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Connell, Mary K.</au><au>Murthy, Sushila</au><au>Phan, Samson</au><au>Xu, Chengpei</au><au>Buchanan, JoAnn</au><au>Spilker, Ryan</au><au>Dalman, Ronald L.</au><au>Zarins, Christopher K.</au><au>Denk, Winfried</au><au>Taylor, Charles A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging</atitle><jtitle>Matrix biology</jtitle><addtitle>Matrix Biol</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>27</volume><issue>3</issue><spage>171</spage><epage>181</epage><pages>171-181</pages><issn>0945-053X</issn><eissn>1569-1802</eissn><abstract>Changes in arterial wall composition and function underlie all forms of vascular disease. The fundamental structural and functional unit of the aortic wall is the medial lamellar unit (MLU). While the basic composition and organization of the MLU is known, three-dimensional (3D) microstructural details are tenuous, due (in part) to lack of three-dimensional data at micro- and nano-scales. We applied novel electron and confocal microscopy techniques to obtain 3D volumetric information of aortic medial microstructure at micro- and nano-scales with all constituents present. For the rat abdominal aorta, we show that medial elastin has three primary forms: with approximately 71% of total elastin as thick, continuous lamellar sheets, 27% as thin, protruding interlamellar elastin fibers (IEFs), and 2% as thick radial struts. Elastin pores are not simply holes in lamellar sheets, but are indented and gusseted openings in lamellae. Smooth muscle cells (SMCs) weave throughout the interlamellar elastin framework, with cytoplasmic extensions abutting IEFs, resulting in approximately 20° radial tilt (relative to the lumen surface) of elliptical SMC nuclei. Collagen fibers are organized as large, parallel bundles tightly enveloping SMC nuclei. Quantification of the orientation of collagen bundles, SMC nuclei, and IEFs reveal that all three primary medial constituents have predominantly circumferential orientation, correlating with reported circumferentially dominant values of physiological stress, collagen fiber recruitment, and tissue stiffness. This high resolution three-dimensional view of the aortic media reveals MLU microstructure details that suggest a highly complex and integrated mural organization that correlates with aortic mechanical properties.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>18248974</pmid><doi>10.1016/j.matbio.2007.10.008</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0945-053X
ispartof Matrix biology, 2008-04, Vol.27 (3), p.171-181
issn 0945-053X
1569-1802
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2679973
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Aorta
Aorta - pathology
Aorta, Abdominal - pathology
Cell Nucleus - metabolism
Collagen
Collagen - chemistry
Elastin
Elastin - metabolism
Extracellular matrix
Imaging, Three-Dimensional - methods
Male
Medial lamellar unit
Microscopy, Confocal - methods
Microscopy, Electron - methods
Microstructure
Models, Biological
Myocytes, Smooth Muscle - cytology
Nanotechnology - methods
Rats
Rats, Sprague-Dawley
Smooth muscle cells
title The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20three-dimensional%20micro-%20and%20nanostructure%20of%20the%20aortic%20medial%20lamellar%20unit%20measured%20using%203D%20confocal%20and%20electron%20microscopy%20imaging&rft.jtitle=Matrix%20biology&rft.au=O'Connell,%20Mary%20K.&rft.date=2008-04-01&rft.volume=27&rft.issue=3&rft.spage=171&rft.epage=181&rft.pages=171-181&rft.issn=0945-053X&rft.eissn=1569-1802&rft_id=info:doi/10.1016/j.matbio.2007.10.008&rft_dat=%3Cproquest_pubme%3E70406276%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70406276&rft_id=info:pmid/18248974&rft_els_id=S0945053X0700145X&rfr_iscdi=true