The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging
Changes in arterial wall composition and function underlie all forms of vascular disease. The fundamental structural and functional unit of the aortic wall is the medial lamellar unit (MLU). While the basic composition and organization of the MLU is known, three-dimensional (3D) microstructural deta...
Gespeichert in:
Veröffentlicht in: | Matrix biology 2008-04, Vol.27 (3), p.171-181 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 181 |
---|---|
container_issue | 3 |
container_start_page | 171 |
container_title | Matrix biology |
container_volume | 27 |
creator | O'Connell, Mary K. Murthy, Sushila Phan, Samson Xu, Chengpei Buchanan, JoAnn Spilker, Ryan Dalman, Ronald L. Zarins, Christopher K. Denk, Winfried Taylor, Charles A. |
description | Changes in arterial wall composition and function underlie all forms of vascular disease. The fundamental structural and functional unit of the aortic wall is the medial lamellar unit (MLU). While the basic composition and organization of the MLU is known, three-dimensional (3D) microstructural details are tenuous, due (in part) to lack of three-dimensional data at micro- and nano-scales. We applied novel electron and confocal microscopy techniques to obtain 3D volumetric information of aortic medial microstructure at micro- and nano-scales with all constituents present. For the rat abdominal aorta, we show that medial elastin has three primary forms: with approximately 71% of total elastin as thick, continuous lamellar sheets, 27% as thin, protruding interlamellar elastin fibers (IEFs), and 2% as thick radial struts. Elastin pores are not simply holes in lamellar sheets, but are indented and gusseted openings in lamellae. Smooth muscle cells (SMCs) weave throughout the interlamellar elastin framework, with cytoplasmic extensions abutting IEFs, resulting in approximately 20° radial tilt (relative to the lumen surface) of elliptical SMC nuclei. Collagen fibers are organized as large, parallel bundles tightly enveloping SMC nuclei. Quantification of the orientation of collagen bundles, SMC nuclei, and IEFs reveal that all three primary medial constituents have predominantly circumferential orientation, correlating with reported circumferentially dominant values of physiological stress, collagen fiber recruitment, and tissue stiffness. This high resolution three-dimensional view of the aortic media reveals MLU microstructure details that suggest a highly complex and integrated mural organization that correlates with aortic mechanical properties. |
doi_str_mv | 10.1016/j.matbio.2007.10.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2679973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0945053X0700145X</els_id><sourcerecordid>70406276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-92ce8fcac21c0d73268ac85dc0646d50629c01589aa96f84ddfbef656d3f6ecc3</originalsourceid><addsrcrecordid>eNp9kctuFDEQRa2IKBkCf4CQV-x6cL_82CChhASkSNkEiZ3lKVfPeNRtD7Y7Uv6Bj8atGRHYsLJUPnXrVl1C3tVsXbOaf9yvJ5M3LqwbxkQprRmTZ2RV91xVtWTNK7Jiqusr1rc_LsnrlPaMsa4T8oJc1rLppBLdivx63CHNu4hYWTehTy54M9LJQQwVNd5Sb3xIOc6Q54g0DIVGakLMDuiE1hV6NBOOo4l09i6XokkFtXROzm9pe0Mh-CFAARc9HBFyDP44I0E4PFM3mW1h35DzwYwJ357eK_L99svj9dfq_uHu2_Xn-wr6RuRKNYByAANNDcyKtuHSgOwtMN5x2zPeKGB1L5Uxig-ys3bY4MB7btuBI0B7RT4ddQ_zpqwA6HM0oz7E4iM-62Cc_vfHu53ehifdcKGUaIvAh5NADD9nTFlPLsFyA49hTlqwrrgQvIDdEVxWTRGHP0NqppcY9V4fY9RLjEu1xFja3v9t8KXplNvLBljO9OQw6gQOPZQ8YjmvtsH9f8JvK7C1qw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70406276</pqid></control><display><type>article</type><title>The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>O'Connell, Mary K. ; Murthy, Sushila ; Phan, Samson ; Xu, Chengpei ; Buchanan, JoAnn ; Spilker, Ryan ; Dalman, Ronald L. ; Zarins, Christopher K. ; Denk, Winfried ; Taylor, Charles A.</creator><creatorcontrib>O'Connell, Mary K. ; Murthy, Sushila ; Phan, Samson ; Xu, Chengpei ; Buchanan, JoAnn ; Spilker, Ryan ; Dalman, Ronald L. ; Zarins, Christopher K. ; Denk, Winfried ; Taylor, Charles A.</creatorcontrib><description>Changes in arterial wall composition and function underlie all forms of vascular disease. The fundamental structural and functional unit of the aortic wall is the medial lamellar unit (MLU). While the basic composition and organization of the MLU is known, three-dimensional (3D) microstructural details are tenuous, due (in part) to lack of three-dimensional data at micro- and nano-scales. We applied novel electron and confocal microscopy techniques to obtain 3D volumetric information of aortic medial microstructure at micro- and nano-scales with all constituents present. For the rat abdominal aorta, we show that medial elastin has three primary forms: with approximately 71% of total elastin as thick, continuous lamellar sheets, 27% as thin, protruding interlamellar elastin fibers (IEFs), and 2% as thick radial struts. Elastin pores are not simply holes in lamellar sheets, but are indented and gusseted openings in lamellae. Smooth muscle cells (SMCs) weave throughout the interlamellar elastin framework, with cytoplasmic extensions abutting IEFs, resulting in approximately 20° radial tilt (relative to the lumen surface) of elliptical SMC nuclei. Collagen fibers are organized as large, parallel bundles tightly enveloping SMC nuclei. Quantification of the orientation of collagen bundles, SMC nuclei, and IEFs reveal that all three primary medial constituents have predominantly circumferential orientation, correlating with reported circumferentially dominant values of physiological stress, collagen fiber recruitment, and tissue stiffness. This high resolution three-dimensional view of the aortic media reveals MLU microstructure details that suggest a highly complex and integrated mural organization that correlates with aortic mechanical properties.</description><identifier>ISSN: 0945-053X</identifier><identifier>EISSN: 1569-1802</identifier><identifier>DOI: 10.1016/j.matbio.2007.10.008</identifier><identifier>PMID: 18248974</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Aorta ; Aorta - pathology ; Aorta, Abdominal - pathology ; Cell Nucleus - metabolism ; Collagen ; Collagen - chemistry ; Elastin ; Elastin - metabolism ; Extracellular matrix ; Imaging, Three-Dimensional - methods ; Male ; Medial lamellar unit ; Microscopy, Confocal - methods ; Microscopy, Electron - methods ; Microstructure ; Models, Biological ; Myocytes, Smooth Muscle - cytology ; Nanotechnology - methods ; Rats ; Rats, Sprague-Dawley ; Smooth muscle cells</subject><ispartof>Matrix biology, 2008-04, Vol.27 (3), p.171-181</ispartof><rights>2007 International Society of Matrix Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-92ce8fcac21c0d73268ac85dc0646d50629c01589aa96f84ddfbef656d3f6ecc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matbio.2007.10.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18248974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Connell, Mary K.</creatorcontrib><creatorcontrib>Murthy, Sushila</creatorcontrib><creatorcontrib>Phan, Samson</creatorcontrib><creatorcontrib>Xu, Chengpei</creatorcontrib><creatorcontrib>Buchanan, JoAnn</creatorcontrib><creatorcontrib>Spilker, Ryan</creatorcontrib><creatorcontrib>Dalman, Ronald L.</creatorcontrib><creatorcontrib>Zarins, Christopher K.</creatorcontrib><creatorcontrib>Denk, Winfried</creatorcontrib><creatorcontrib>Taylor, Charles A.</creatorcontrib><title>The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging</title><title>Matrix biology</title><addtitle>Matrix Biol</addtitle><description>Changes in arterial wall composition and function underlie all forms of vascular disease. The fundamental structural and functional unit of the aortic wall is the medial lamellar unit (MLU). While the basic composition and organization of the MLU is known, three-dimensional (3D) microstructural details are tenuous, due (in part) to lack of three-dimensional data at micro- and nano-scales. We applied novel electron and confocal microscopy techniques to obtain 3D volumetric information of aortic medial microstructure at micro- and nano-scales with all constituents present. For the rat abdominal aorta, we show that medial elastin has three primary forms: with approximately 71% of total elastin as thick, continuous lamellar sheets, 27% as thin, protruding interlamellar elastin fibers (IEFs), and 2% as thick radial struts. Elastin pores are not simply holes in lamellar sheets, but are indented and gusseted openings in lamellae. Smooth muscle cells (SMCs) weave throughout the interlamellar elastin framework, with cytoplasmic extensions abutting IEFs, resulting in approximately 20° radial tilt (relative to the lumen surface) of elliptical SMC nuclei. Collagen fibers are organized as large, parallel bundles tightly enveloping SMC nuclei. Quantification of the orientation of collagen bundles, SMC nuclei, and IEFs reveal that all three primary medial constituents have predominantly circumferential orientation, correlating with reported circumferentially dominant values of physiological stress, collagen fiber recruitment, and tissue stiffness. This high resolution three-dimensional view of the aortic media reveals MLU microstructure details that suggest a highly complex and integrated mural organization that correlates with aortic mechanical properties.</description><subject>Animals</subject><subject>Aorta</subject><subject>Aorta - pathology</subject><subject>Aorta, Abdominal - pathology</subject><subject>Cell Nucleus - metabolism</subject><subject>Collagen</subject><subject>Collagen - chemistry</subject><subject>Elastin</subject><subject>Elastin - metabolism</subject><subject>Extracellular matrix</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Male</subject><subject>Medial lamellar unit</subject><subject>Microscopy, Confocal - methods</subject><subject>Microscopy, Electron - methods</subject><subject>Microstructure</subject><subject>Models, Biological</subject><subject>Myocytes, Smooth Muscle - cytology</subject><subject>Nanotechnology - methods</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Smooth muscle cells</subject><issn>0945-053X</issn><issn>1569-1802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctuFDEQRa2IKBkCf4CQV-x6cL_82CChhASkSNkEiZ3lKVfPeNRtD7Y7Uv6Bj8atGRHYsLJUPnXrVl1C3tVsXbOaf9yvJ5M3LqwbxkQprRmTZ2RV91xVtWTNK7Jiqusr1rc_LsnrlPaMsa4T8oJc1rLppBLdivx63CHNu4hYWTehTy54M9LJQQwVNd5Sb3xIOc6Q54g0DIVGakLMDuiE1hV6NBOOo4l09i6XokkFtXROzm9pe0Mh-CFAARc9HBFyDP44I0E4PFM3mW1h35DzwYwJ357eK_L99svj9dfq_uHu2_Xn-wr6RuRKNYByAANNDcyKtuHSgOwtMN5x2zPeKGB1L5Uxig-ys3bY4MB7btuBI0B7RT4ddQ_zpqwA6HM0oz7E4iM-62Cc_vfHu53ehifdcKGUaIvAh5NADD9nTFlPLsFyA49hTlqwrrgQvIDdEVxWTRGHP0NqppcY9V4fY9RLjEu1xFja3v9t8KXplNvLBljO9OQw6gQOPZQ8YjmvtsH9f8JvK7C1qw</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>O'Connell, Mary K.</creator><creator>Murthy, Sushila</creator><creator>Phan, Samson</creator><creator>Xu, Chengpei</creator><creator>Buchanan, JoAnn</creator><creator>Spilker, Ryan</creator><creator>Dalman, Ronald L.</creator><creator>Zarins, Christopher K.</creator><creator>Denk, Winfried</creator><creator>Taylor, Charles A.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080401</creationdate><title>The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging</title><author>O'Connell, Mary K. ; Murthy, Sushila ; Phan, Samson ; Xu, Chengpei ; Buchanan, JoAnn ; Spilker, Ryan ; Dalman, Ronald L. ; Zarins, Christopher K. ; Denk, Winfried ; Taylor, Charles A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-92ce8fcac21c0d73268ac85dc0646d50629c01589aa96f84ddfbef656d3f6ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Aorta</topic><topic>Aorta - pathology</topic><topic>Aorta, Abdominal - pathology</topic><topic>Cell Nucleus - metabolism</topic><topic>Collagen</topic><topic>Collagen - chemistry</topic><topic>Elastin</topic><topic>Elastin - metabolism</topic><topic>Extracellular matrix</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Male</topic><topic>Medial lamellar unit</topic><topic>Microscopy, Confocal - methods</topic><topic>Microscopy, Electron - methods</topic><topic>Microstructure</topic><topic>Models, Biological</topic><topic>Myocytes, Smooth Muscle - cytology</topic><topic>Nanotechnology - methods</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Smooth muscle cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Connell, Mary K.</creatorcontrib><creatorcontrib>Murthy, Sushila</creatorcontrib><creatorcontrib>Phan, Samson</creatorcontrib><creatorcontrib>Xu, Chengpei</creatorcontrib><creatorcontrib>Buchanan, JoAnn</creatorcontrib><creatorcontrib>Spilker, Ryan</creatorcontrib><creatorcontrib>Dalman, Ronald L.</creatorcontrib><creatorcontrib>Zarins, Christopher K.</creatorcontrib><creatorcontrib>Denk, Winfried</creatorcontrib><creatorcontrib>Taylor, Charles A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Matrix biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Connell, Mary K.</au><au>Murthy, Sushila</au><au>Phan, Samson</au><au>Xu, Chengpei</au><au>Buchanan, JoAnn</au><au>Spilker, Ryan</au><au>Dalman, Ronald L.</au><au>Zarins, Christopher K.</au><au>Denk, Winfried</au><au>Taylor, Charles A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging</atitle><jtitle>Matrix biology</jtitle><addtitle>Matrix Biol</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>27</volume><issue>3</issue><spage>171</spage><epage>181</epage><pages>171-181</pages><issn>0945-053X</issn><eissn>1569-1802</eissn><abstract>Changes in arterial wall composition and function underlie all forms of vascular disease. The fundamental structural and functional unit of the aortic wall is the medial lamellar unit (MLU). While the basic composition and organization of the MLU is known, three-dimensional (3D) microstructural details are tenuous, due (in part) to lack of three-dimensional data at micro- and nano-scales. We applied novel electron and confocal microscopy techniques to obtain 3D volumetric information of aortic medial microstructure at micro- and nano-scales with all constituents present. For the rat abdominal aorta, we show that medial elastin has three primary forms: with approximately 71% of total elastin as thick, continuous lamellar sheets, 27% as thin, protruding interlamellar elastin fibers (IEFs), and 2% as thick radial struts. Elastin pores are not simply holes in lamellar sheets, but are indented and gusseted openings in lamellae. Smooth muscle cells (SMCs) weave throughout the interlamellar elastin framework, with cytoplasmic extensions abutting IEFs, resulting in approximately 20° radial tilt (relative to the lumen surface) of elliptical SMC nuclei. Collagen fibers are organized as large, parallel bundles tightly enveloping SMC nuclei. Quantification of the orientation of collagen bundles, SMC nuclei, and IEFs reveal that all three primary medial constituents have predominantly circumferential orientation, correlating with reported circumferentially dominant values of physiological stress, collagen fiber recruitment, and tissue stiffness. This high resolution three-dimensional view of the aortic media reveals MLU microstructure details that suggest a highly complex and integrated mural organization that correlates with aortic mechanical properties.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>18248974</pmid><doi>10.1016/j.matbio.2007.10.008</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0945-053X |
ispartof | Matrix biology, 2008-04, Vol.27 (3), p.171-181 |
issn | 0945-053X 1569-1802 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2679973 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Aorta Aorta - pathology Aorta, Abdominal - pathology Cell Nucleus - metabolism Collagen Collagen - chemistry Elastin Elastin - metabolism Extracellular matrix Imaging, Three-Dimensional - methods Male Medial lamellar unit Microscopy, Confocal - methods Microscopy, Electron - methods Microstructure Models, Biological Myocytes, Smooth Muscle - cytology Nanotechnology - methods Rats Rats, Sprague-Dawley Smooth muscle cells |
title | The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20three-dimensional%20micro-%20and%20nanostructure%20of%20the%20aortic%20medial%20lamellar%20unit%20measured%20using%203D%20confocal%20and%20electron%20microscopy%20imaging&rft.jtitle=Matrix%20biology&rft.au=O'Connell,%20Mary%20K.&rft.date=2008-04-01&rft.volume=27&rft.issue=3&rft.spage=171&rft.epage=181&rft.pages=171-181&rft.issn=0945-053X&rft.eissn=1569-1802&rft_id=info:doi/10.1016/j.matbio.2007.10.008&rft_dat=%3Cproquest_pubme%3E70406276%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70406276&rft_id=info:pmid/18248974&rft_els_id=S0945053X0700145X&rfr_iscdi=true |