In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells

Intramembrane proteases hydrolyze peptide bonds within cell membranes. Recent crystal structures revealed that rhomboid intramembrane proteases contain a hydrated active site that opens to the outside of the cell, but is protected laterally from membrane lipids by protein segments. Using Escherichia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological chemistry 2008-08, Vol.389 (8), p.1107-1115
Hauptverfasser: Urban, Sinisa, Baker, Rosanna P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1115
container_issue 8
container_start_page 1107
container_title Biological chemistry
container_volume 389
creator Urban, Sinisa
Baker, Rosanna P.
description Intramembrane proteases hydrolyze peptide bonds within cell membranes. Recent crystal structures revealed that rhomboid intramembrane proteases contain a hydrated active site that opens to the outside of the cell, but is protected laterally from membrane lipids by protein segments. Using Escherichia coli rhomboid (GlpG) structures as a guide, we previously took a mutational approach to identify the GlpG gating mechanism that allows substrates to enter the active site laterally from the membrane. Mutations that weaken contacts keeping the gate closed increase enzyme activity and implicate transmembrane segment 5 as the substrate gate. Since these analyses were performed in vitro with pure proteins in detergent micelles, we have now examined GlpG in its natural environment, within the membrane of live E. coli cells. In striking congruity with in vitro analysis, gate-opening mutants in transmembrane segment 5 display up to a 10-fold increase in protease activity in living cells. Conversely, mutations in other parts of the protease, including the membrane-inserted L1 loop previously thought to be the gate, decrease enzyme activity. These observations provide evidence for the existence of both closed and open forms of GlpG in cells, and show that inter-conversion between them via substrate gating is rate limiting physiologically.
doi_str_mv 10.1515/BC.2008.122
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2678756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69745090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-668bf7f30bc2134d9b30eabd7d160a50180950ff98348856dbda4c1ac0277ae3</originalsourceid><addsrcrecordid>eNqFks-P1CAUxxujcdfVk3fDyYvpCAUKXEzcxh-bXWPWzJ08WjqLtmUE2jhH_3OpM1n15ImX9_3ky3t8KYrnBG8IJ_z1ZbOpMJYbUlUPinPCqCgZJfzh75qUtaD4rHgS41ecKczo4-KMSCVUTdl58fNqQotbPIIJhkN0EQW7WBgiirOJKUCy5Q6Sm3ZonBNMKSLfI0Dhzo_Guw65KUOjHU2AyaJ98MlCtKhzcT_AIcttWBsdgja5xaW1hYZcZcfWDkN8Wjzq83322em8KLbv322bj-XN5w9XzdubsmVMprKupelFT7FpK0JZpwzFFkwnOlJj4JhIrDjueyUpk5LXnemAtQRaXAkBll4Ub462-9mMtmvtOveg98GNEA7ag9P_KpO70zu_6KoWUvA6G7w8GQT_fbYx6dHFdYO8t5-jrpVgHCv8X5Dkt1eYrOCrI9gGH2Ow_f00BOs1Wn3Z6DVanaPN9Iu_F_jDnrLMQHkEXEz2x70O4ZvOf0Bwfbtl-rapPqnr6y9a0F-QzrHP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19799010</pqid></control><display><type>article</type><title>In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells</title><source>MEDLINE</source><source>De Gruyter journals</source><creator>Urban, Sinisa ; Baker, Rosanna P.</creator><creatorcontrib>Urban, Sinisa ; Baker, Rosanna P.</creatorcontrib><description>Intramembrane proteases hydrolyze peptide bonds within cell membranes. Recent crystal structures revealed that rhomboid intramembrane proteases contain a hydrated active site that opens to the outside of the cell, but is protected laterally from membrane lipids by protein segments. Using Escherichia coli rhomboid (GlpG) structures as a guide, we previously took a mutational approach to identify the GlpG gating mechanism that allows substrates to enter the active site laterally from the membrane. Mutations that weaken contacts keeping the gate closed increase enzyme activity and implicate transmembrane segment 5 as the substrate gate. Since these analyses were performed in vitro with pure proteins in detergent micelles, we have now examined GlpG in its natural environment, within the membrane of live E. coli cells. In striking congruity with in vitro analysis, gate-opening mutants in transmembrane segment 5 display up to a 10-fold increase in protease activity in living cells. Conversely, mutations in other parts of the protease, including the membrane-inserted L1 loop previously thought to be the gate, decrease enzyme activity. These observations provide evidence for the existence of both closed and open forms of GlpG in cells, and show that inter-conversion between them via substrate gating is rate limiting physiologically.</description><identifier>ISSN: 1431-6730</identifier><identifier>EISSN: 1437-4315</identifier><identifier>DOI: 10.1515/BC.2008.122</identifier><identifier>PMID: 18979634</identifier><language>eng</language><publisher>Germany: Walter de Gruyter</publisher><subject>Animals ; Catalytic Domain ; Cell Line ; Cell Membrane - enzymology ; Cell Survival ; Chlorocebus aethiops ; DNA-Binding Proteins - analysis ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Endopeptidases - analysis ; Endopeptidases - chemistry ; Endopeptidases - genetics ; Endopeptidases - metabolism ; Enzyme Activation ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli Proteins - analysis ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Membrane Proteins - analysis ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Models, Molecular ; Mutation - genetics ; presenilin ; Protein Structure, Tertiary ; regulated intramembrane proteolysis ; site-2 protease ; substrate gating ; Substrate Specificity</subject><ispartof>Biological chemistry, 2008-08, Vol.389 (8), p.1107-1115</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-668bf7f30bc2134d9b30eabd7d160a50180950ff98348856dbda4c1ac0277ae3</citedby><cites>FETCH-LOGICAL-c448t-668bf7f30bc2134d9b30eabd7d160a50180950ff98348856dbda4c1ac0277ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18979634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Urban, Sinisa</creatorcontrib><creatorcontrib>Baker, Rosanna P.</creatorcontrib><title>In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells</title><title>Biological chemistry</title><addtitle>Biological Chemistry</addtitle><description>Intramembrane proteases hydrolyze peptide bonds within cell membranes. Recent crystal structures revealed that rhomboid intramembrane proteases contain a hydrated active site that opens to the outside of the cell, but is protected laterally from membrane lipids by protein segments. Using Escherichia coli rhomboid (GlpG) structures as a guide, we previously took a mutational approach to identify the GlpG gating mechanism that allows substrates to enter the active site laterally from the membrane. Mutations that weaken contacts keeping the gate closed increase enzyme activity and implicate transmembrane segment 5 as the substrate gate. Since these analyses were performed in vitro with pure proteins in detergent micelles, we have now examined GlpG in its natural environment, within the membrane of live E. coli cells. In striking congruity with in vitro analysis, gate-opening mutants in transmembrane segment 5 display up to a 10-fold increase in protease activity in living cells. Conversely, mutations in other parts of the protease, including the membrane-inserted L1 loop previously thought to be the gate, decrease enzyme activity. These observations provide evidence for the existence of both closed and open forms of GlpG in cells, and show that inter-conversion between them via substrate gating is rate limiting physiologically.</description><subject>Animals</subject><subject>Catalytic Domain</subject><subject>Cell Line</subject><subject>Cell Membrane - enzymology</subject><subject>Cell Survival</subject><subject>Chlorocebus aethiops</subject><subject>DNA-Binding Proteins - analysis</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Endopeptidases - analysis</subject><subject>Endopeptidases - chemistry</subject><subject>Endopeptidases - genetics</subject><subject>Endopeptidases - metabolism</subject><subject>Enzyme Activation</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - analysis</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Membrane Proteins - analysis</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Mutation - genetics</subject><subject>presenilin</subject><subject>Protein Structure, Tertiary</subject><subject>regulated intramembrane proteolysis</subject><subject>site-2 protease</subject><subject>substrate gating</subject><subject>Substrate Specificity</subject><issn>1431-6730</issn><issn>1437-4315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks-P1CAUxxujcdfVk3fDyYvpCAUKXEzcxh-bXWPWzJ08WjqLtmUE2jhH_3OpM1n15ImX9_3ky3t8KYrnBG8IJ_z1ZbOpMJYbUlUPinPCqCgZJfzh75qUtaD4rHgS41ecKczo4-KMSCVUTdl58fNqQotbPIIJhkN0EQW7WBgiirOJKUCy5Q6Sm3ZonBNMKSLfI0Dhzo_Guw65KUOjHU2AyaJ98MlCtKhzcT_AIcttWBsdgja5xaW1hYZcZcfWDkN8Wjzq83322em8KLbv322bj-XN5w9XzdubsmVMprKupelFT7FpK0JZpwzFFkwnOlJj4JhIrDjueyUpk5LXnemAtQRaXAkBll4Ub462-9mMtmvtOveg98GNEA7ag9P_KpO70zu_6KoWUvA6G7w8GQT_fbYx6dHFdYO8t5-jrpVgHCv8X5Dkt1eYrOCrI9gGH2Ow_f00BOs1Wn3Z6DVanaPN9Iu_F_jDnrLMQHkEXEz2x70O4ZvOf0Bwfbtl-rapPqnr6y9a0F-QzrHP</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Urban, Sinisa</creator><creator>Baker, Rosanna P.</creator><general>Walter de Gruyter</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080801</creationdate><title>In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells</title><author>Urban, Sinisa ; Baker, Rosanna P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-668bf7f30bc2134d9b30eabd7d160a50180950ff98348856dbda4c1ac0277ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Catalytic Domain</topic><topic>Cell Line</topic><topic>Cell Membrane - enzymology</topic><topic>Cell Survival</topic><topic>Chlorocebus aethiops</topic><topic>DNA-Binding Proteins - analysis</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Endopeptidases - analysis</topic><topic>Endopeptidases - chemistry</topic><topic>Endopeptidases - genetics</topic><topic>Endopeptidases - metabolism</topic><topic>Enzyme Activation</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - analysis</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Membrane Proteins - analysis</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Mutation - genetics</topic><topic>presenilin</topic><topic>Protein Structure, Tertiary</topic><topic>regulated intramembrane proteolysis</topic><topic>site-2 protease</topic><topic>substrate gating</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urban, Sinisa</creatorcontrib><creatorcontrib>Baker, Rosanna P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urban, Sinisa</au><au>Baker, Rosanna P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells</atitle><jtitle>Biological chemistry</jtitle><addtitle>Biological Chemistry</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>389</volume><issue>8</issue><spage>1107</spage><epage>1115</epage><pages>1107-1115</pages><issn>1431-6730</issn><eissn>1437-4315</eissn><abstract>Intramembrane proteases hydrolyze peptide bonds within cell membranes. Recent crystal structures revealed that rhomboid intramembrane proteases contain a hydrated active site that opens to the outside of the cell, but is protected laterally from membrane lipids by protein segments. Using Escherichia coli rhomboid (GlpG) structures as a guide, we previously took a mutational approach to identify the GlpG gating mechanism that allows substrates to enter the active site laterally from the membrane. Mutations that weaken contacts keeping the gate closed increase enzyme activity and implicate transmembrane segment 5 as the substrate gate. Since these analyses were performed in vitro with pure proteins in detergent micelles, we have now examined GlpG in its natural environment, within the membrane of live E. coli cells. In striking congruity with in vitro analysis, gate-opening mutants in transmembrane segment 5 display up to a 10-fold increase in protease activity in living cells. Conversely, mutations in other parts of the protease, including the membrane-inserted L1 loop previously thought to be the gate, decrease enzyme activity. These observations provide evidence for the existence of both closed and open forms of GlpG in cells, and show that inter-conversion between them via substrate gating is rate limiting physiologically.</abstract><cop>Germany</cop><pub>Walter de Gruyter</pub><pmid>18979634</pmid><doi>10.1515/BC.2008.122</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1431-6730
ispartof Biological chemistry, 2008-08, Vol.389 (8), p.1107-1115
issn 1431-6730
1437-4315
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2678756
source MEDLINE; De Gruyter journals
subjects Animals
Catalytic Domain
Cell Line
Cell Membrane - enzymology
Cell Survival
Chlorocebus aethiops
DNA-Binding Proteins - analysis
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Endopeptidases - analysis
Endopeptidases - chemistry
Endopeptidases - genetics
Endopeptidases - metabolism
Enzyme Activation
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - genetics
Escherichia coli Proteins - analysis
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Membrane Proteins - analysis
Membrane Proteins - chemistry
Membrane Proteins - genetics
Membrane Proteins - metabolism
Models, Molecular
Mutation - genetics
presenilin
Protein Structure, Tertiary
regulated intramembrane proteolysis
site-2 protease
substrate gating
Substrate Specificity
title In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20analysis%20reveals%20substrate-gating%20mutants%20of%20a%20rhomboid%20intramembrane%20protease%20display%20increased%20activity%20in%20living%20cells&rft.jtitle=Biological%20chemistry&rft.au=Urban,%20Sinisa&rft.date=2008-08-01&rft.volume=389&rft.issue=8&rft.spage=1107&rft.epage=1115&rft.pages=1107-1115&rft.issn=1431-6730&rft.eissn=1437-4315&rft_id=info:doi/10.1515/BC.2008.122&rft_dat=%3Cproquest_pubme%3E69745090%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19799010&rft_id=info:pmid/18979634&rfr_iscdi=true