In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells
Intramembrane proteases hydrolyze peptide bonds within cell membranes. Recent crystal structures revealed that rhomboid intramembrane proteases contain a hydrated active site that opens to the outside of the cell, but is protected laterally from membrane lipids by protein segments. Using Escherichia...
Gespeichert in:
Veröffentlicht in: | Biological chemistry 2008-08, Vol.389 (8), p.1107-1115 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1115 |
---|---|
container_issue | 8 |
container_start_page | 1107 |
container_title | Biological chemistry |
container_volume | 389 |
creator | Urban, Sinisa Baker, Rosanna P. |
description | Intramembrane proteases hydrolyze peptide bonds within cell membranes. Recent crystal structures revealed that rhomboid intramembrane proteases contain a hydrated active site that opens to the outside of the cell, but is protected laterally from membrane lipids by protein segments. Using Escherichia coli rhomboid (GlpG) structures as a guide, we previously took a mutational approach to identify the GlpG gating mechanism that allows substrates to enter the active site laterally from the membrane. Mutations that weaken contacts keeping the gate closed increase enzyme activity and implicate transmembrane segment 5 as the substrate gate. Since these analyses were performed in vitro with pure proteins in detergent micelles, we have now examined GlpG in its natural environment, within the membrane of live E. coli cells. In striking congruity with in vitro analysis, gate-opening mutants in transmembrane segment 5 display up to a 10-fold increase in protease activity in living cells. Conversely, mutations in other parts of the protease, including the membrane-inserted L1 loop previously thought to be the gate, decrease enzyme activity. These observations provide evidence for the existence of both closed and open forms of GlpG in cells, and show that inter-conversion between them via substrate gating is rate limiting physiologically. |
doi_str_mv | 10.1515/BC.2008.122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2678756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69745090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-668bf7f30bc2134d9b30eabd7d160a50180950ff98348856dbda4c1ac0277ae3</originalsourceid><addsrcrecordid>eNqFks-P1CAUxxujcdfVk3fDyYvpCAUKXEzcxh-bXWPWzJ08WjqLtmUE2jhH_3OpM1n15ImX9_3ky3t8KYrnBG8IJ_z1ZbOpMJYbUlUPinPCqCgZJfzh75qUtaD4rHgS41ecKczo4-KMSCVUTdl58fNqQotbPIIJhkN0EQW7WBgiirOJKUCy5Q6Sm3ZonBNMKSLfI0Dhzo_Guw65KUOjHU2AyaJ98MlCtKhzcT_AIcttWBsdgja5xaW1hYZcZcfWDkN8Wjzq83322em8KLbv322bj-XN5w9XzdubsmVMprKupelFT7FpK0JZpwzFFkwnOlJj4JhIrDjueyUpk5LXnemAtQRaXAkBll4Ub462-9mMtmvtOveg98GNEA7ag9P_KpO70zu_6KoWUvA6G7w8GQT_fbYx6dHFdYO8t5-jrpVgHCv8X5Dkt1eYrOCrI9gGH2Ow_f00BOs1Wn3Z6DVanaPN9Iu_F_jDnrLMQHkEXEz2x70O4ZvOf0Bwfbtl-rapPqnr6y9a0F-QzrHP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19799010</pqid></control><display><type>article</type><title>In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells</title><source>MEDLINE</source><source>De Gruyter journals</source><creator>Urban, Sinisa ; Baker, Rosanna P.</creator><creatorcontrib>Urban, Sinisa ; Baker, Rosanna P.</creatorcontrib><description>Intramembrane proteases hydrolyze peptide bonds within cell membranes. Recent crystal structures revealed that rhomboid intramembrane proteases contain a hydrated active site that opens to the outside of the cell, but is protected laterally from membrane lipids by protein segments. Using Escherichia coli rhomboid (GlpG) structures as a guide, we previously took a mutational approach to identify the GlpG gating mechanism that allows substrates to enter the active site laterally from the membrane. Mutations that weaken contacts keeping the gate closed increase enzyme activity and implicate transmembrane segment 5 as the substrate gate. Since these analyses were performed in vitro with pure proteins in detergent micelles, we have now examined GlpG in its natural environment, within the membrane of live E. coli cells. In striking congruity with in vitro analysis, gate-opening mutants in transmembrane segment 5 display up to a 10-fold increase in protease activity in living cells. Conversely, mutations in other parts of the protease, including the membrane-inserted L1 loop previously thought to be the gate, decrease enzyme activity. These observations provide evidence for the existence of both closed and open forms of GlpG in cells, and show that inter-conversion between them via substrate gating is rate limiting physiologically.</description><identifier>ISSN: 1431-6730</identifier><identifier>EISSN: 1437-4315</identifier><identifier>DOI: 10.1515/BC.2008.122</identifier><identifier>PMID: 18979634</identifier><language>eng</language><publisher>Germany: Walter de Gruyter</publisher><subject>Animals ; Catalytic Domain ; Cell Line ; Cell Membrane - enzymology ; Cell Survival ; Chlorocebus aethiops ; DNA-Binding Proteins - analysis ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Endopeptidases - analysis ; Endopeptidases - chemistry ; Endopeptidases - genetics ; Endopeptidases - metabolism ; Enzyme Activation ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli Proteins - analysis ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Membrane Proteins - analysis ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Models, Molecular ; Mutation - genetics ; presenilin ; Protein Structure, Tertiary ; regulated intramembrane proteolysis ; site-2 protease ; substrate gating ; Substrate Specificity</subject><ispartof>Biological chemistry, 2008-08, Vol.389 (8), p.1107-1115</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-668bf7f30bc2134d9b30eabd7d160a50180950ff98348856dbda4c1ac0277ae3</citedby><cites>FETCH-LOGICAL-c448t-668bf7f30bc2134d9b30eabd7d160a50180950ff98348856dbda4c1ac0277ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18979634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Urban, Sinisa</creatorcontrib><creatorcontrib>Baker, Rosanna P.</creatorcontrib><title>In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells</title><title>Biological chemistry</title><addtitle>Biological Chemistry</addtitle><description>Intramembrane proteases hydrolyze peptide bonds within cell membranes. Recent crystal structures revealed that rhomboid intramembrane proteases contain a hydrated active site that opens to the outside of the cell, but is protected laterally from membrane lipids by protein segments. Using Escherichia coli rhomboid (GlpG) structures as a guide, we previously took a mutational approach to identify the GlpG gating mechanism that allows substrates to enter the active site laterally from the membrane. Mutations that weaken contacts keeping the gate closed increase enzyme activity and implicate transmembrane segment 5 as the substrate gate. Since these analyses were performed in vitro with pure proteins in detergent micelles, we have now examined GlpG in its natural environment, within the membrane of live E. coli cells. In striking congruity with in vitro analysis, gate-opening mutants in transmembrane segment 5 display up to a 10-fold increase in protease activity in living cells. Conversely, mutations in other parts of the protease, including the membrane-inserted L1 loop previously thought to be the gate, decrease enzyme activity. These observations provide evidence for the existence of both closed and open forms of GlpG in cells, and show that inter-conversion between them via substrate gating is rate limiting physiologically.</description><subject>Animals</subject><subject>Catalytic Domain</subject><subject>Cell Line</subject><subject>Cell Membrane - enzymology</subject><subject>Cell Survival</subject><subject>Chlorocebus aethiops</subject><subject>DNA-Binding Proteins - analysis</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Endopeptidases - analysis</subject><subject>Endopeptidases - chemistry</subject><subject>Endopeptidases - genetics</subject><subject>Endopeptidases - metabolism</subject><subject>Enzyme Activation</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - analysis</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Membrane Proteins - analysis</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Mutation - genetics</subject><subject>presenilin</subject><subject>Protein Structure, Tertiary</subject><subject>regulated intramembrane proteolysis</subject><subject>site-2 protease</subject><subject>substrate gating</subject><subject>Substrate Specificity</subject><issn>1431-6730</issn><issn>1437-4315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks-P1CAUxxujcdfVk3fDyYvpCAUKXEzcxh-bXWPWzJ08WjqLtmUE2jhH_3OpM1n15ImX9_3ky3t8KYrnBG8IJ_z1ZbOpMJYbUlUPinPCqCgZJfzh75qUtaD4rHgS41ecKczo4-KMSCVUTdl58fNqQotbPIIJhkN0EQW7WBgiirOJKUCy5Q6Sm3ZonBNMKSLfI0Dhzo_Guw65KUOjHU2AyaJ98MlCtKhzcT_AIcttWBsdgja5xaW1hYZcZcfWDkN8Wjzq83322em8KLbv322bj-XN5w9XzdubsmVMprKupelFT7FpK0JZpwzFFkwnOlJj4JhIrDjueyUpk5LXnemAtQRaXAkBll4Ub462-9mMtmvtOveg98GNEA7ag9P_KpO70zu_6KoWUvA6G7w8GQT_fbYx6dHFdYO8t5-jrpVgHCv8X5Dkt1eYrOCrI9gGH2Ow_f00BOs1Wn3Z6DVanaPN9Iu_F_jDnrLMQHkEXEz2x70O4ZvOf0Bwfbtl-rapPqnr6y9a0F-QzrHP</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Urban, Sinisa</creator><creator>Baker, Rosanna P.</creator><general>Walter de Gruyter</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080801</creationdate><title>In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells</title><author>Urban, Sinisa ; Baker, Rosanna P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-668bf7f30bc2134d9b30eabd7d160a50180950ff98348856dbda4c1ac0277ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Catalytic Domain</topic><topic>Cell Line</topic><topic>Cell Membrane - enzymology</topic><topic>Cell Survival</topic><topic>Chlorocebus aethiops</topic><topic>DNA-Binding Proteins - analysis</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Endopeptidases - analysis</topic><topic>Endopeptidases - chemistry</topic><topic>Endopeptidases - genetics</topic><topic>Endopeptidases - metabolism</topic><topic>Enzyme Activation</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - analysis</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Membrane Proteins - analysis</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Mutation - genetics</topic><topic>presenilin</topic><topic>Protein Structure, Tertiary</topic><topic>regulated intramembrane proteolysis</topic><topic>site-2 protease</topic><topic>substrate gating</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urban, Sinisa</creatorcontrib><creatorcontrib>Baker, Rosanna P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urban, Sinisa</au><au>Baker, Rosanna P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells</atitle><jtitle>Biological chemistry</jtitle><addtitle>Biological Chemistry</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>389</volume><issue>8</issue><spage>1107</spage><epage>1115</epage><pages>1107-1115</pages><issn>1431-6730</issn><eissn>1437-4315</eissn><abstract>Intramembrane proteases hydrolyze peptide bonds within cell membranes. Recent crystal structures revealed that rhomboid intramembrane proteases contain a hydrated active site that opens to the outside of the cell, but is protected laterally from membrane lipids by protein segments. Using Escherichia coli rhomboid (GlpG) structures as a guide, we previously took a mutational approach to identify the GlpG gating mechanism that allows substrates to enter the active site laterally from the membrane. Mutations that weaken contacts keeping the gate closed increase enzyme activity and implicate transmembrane segment 5 as the substrate gate. Since these analyses were performed in vitro with pure proteins in detergent micelles, we have now examined GlpG in its natural environment, within the membrane of live E. coli cells. In striking congruity with in vitro analysis, gate-opening mutants in transmembrane segment 5 display up to a 10-fold increase in protease activity in living cells. Conversely, mutations in other parts of the protease, including the membrane-inserted L1 loop previously thought to be the gate, decrease enzyme activity. These observations provide evidence for the existence of both closed and open forms of GlpG in cells, and show that inter-conversion between them via substrate gating is rate limiting physiologically.</abstract><cop>Germany</cop><pub>Walter de Gruyter</pub><pmid>18979634</pmid><doi>10.1515/BC.2008.122</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-6730 |
ispartof | Biological chemistry, 2008-08, Vol.389 (8), p.1107-1115 |
issn | 1431-6730 1437-4315 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2678756 |
source | MEDLINE; De Gruyter journals |
subjects | Animals Catalytic Domain Cell Line Cell Membrane - enzymology Cell Survival Chlorocebus aethiops DNA-Binding Proteins - analysis DNA-Binding Proteins - chemistry DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Endopeptidases - analysis Endopeptidases - chemistry Endopeptidases - genetics Endopeptidases - metabolism Enzyme Activation Escherichia coli Escherichia coli - enzymology Escherichia coli - genetics Escherichia coli Proteins - analysis Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Membrane Proteins - analysis Membrane Proteins - chemistry Membrane Proteins - genetics Membrane Proteins - metabolism Models, Molecular Mutation - genetics presenilin Protein Structure, Tertiary regulated intramembrane proteolysis site-2 protease substrate gating Substrate Specificity |
title | In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20analysis%20reveals%20substrate-gating%20mutants%20of%20a%20rhomboid%20intramembrane%20protease%20display%20increased%20activity%20in%20living%20cells&rft.jtitle=Biological%20chemistry&rft.au=Urban,%20Sinisa&rft.date=2008-08-01&rft.volume=389&rft.issue=8&rft.spage=1107&rft.epage=1115&rft.pages=1107-1115&rft.issn=1431-6730&rft.eissn=1437-4315&rft_id=info:doi/10.1515/BC.2008.122&rft_dat=%3Cproquest_pubme%3E69745090%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19799010&rft_id=info:pmid/18979634&rfr_iscdi=true |