Sample sizes required to detect interactions between two binary fixed-effects in a mixed-effects linear regression model

Mixed-effects linear regression models have become more widely used for analysis of repeatedly measured outcomes in clinical trials over the past decade. There are formulae and tables for estimating sample sizes required to detect the main effects of treatment and the treatment by time interactions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2009-01, Vol.53 (3), p.603-608
Hauptverfasser: Leon, Andrew C., Heo, Moonseong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 608
container_issue 3
container_start_page 603
container_title Computational statistics & data analysis
container_volume 53
creator Leon, Andrew C.
Heo, Moonseong
description Mixed-effects linear regression models have become more widely used for analysis of repeatedly measured outcomes in clinical trials over the past decade. There are formulae and tables for estimating sample sizes required to detect the main effects of treatment and the treatment by time interactions for those models. A formula is proposed to estimate the sample size required to detect an interaction between two binary variables in a factorial design with repeated measures of a continuous outcome. The formula is based, in part, on the fact that the variance of an interaction is fourfold that of the main effect. A simulation study examines the statistical power associated with the resulting sample sizes in a mixed-effects linear regression model with a random intercept. The simulation varies the magnitude ( Δ ) of the standardized main effects and interactions, the intraclass correlation coefficient ( ρ ), and the number ( k ) of repeated measures within-subject. The results of the simulation study verify that the sample size required to detect a 2×2 interaction in a mixed-effects linear regression model is fourfold that to detect a main effect of the same magnitude.
doi_str_mv 10.1016/j.csda.2008.06.010
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2678722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947308003241</els_id><sourcerecordid>1835471746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-c253c09154094e760f97fa873d1f56db84d9035df45108665f4ceca968773363</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEotvCF-CAfOSSYMfxn0gICVWlgCpxoHfLa09arxJna3u3LZ-eibas6IXD2JL93s_jeVX1jtGGUSY_bhqXvW1aSnVDZUMZfVGtmFZtrbhoX1YrFKm67xQ_qU5z3lBK207p19XJYuloT1fVwy87bUcgOfyGTBLc7UICT8pMPBRwhYRYIFlXwhwzWUO5B4ik3M9kHaJNj2QID-BrGAYUZ1QTS6ZnR2OIYBOibxLkjBgyzR7GN9WrwY4Z3j7tZ9X114vr82_11c_L7-dfrmontC61awV3tGcC2-1ASTr0arBacc8GIf1ad76nXPihE4xqKcXQOXC2l1opziU_qz4fsNvdegLvIJZkR7NNYcLuzWyDeX4Tw625mfemlQon2SLgwxMgzXc7yMVMITsYRxth3mXDNBedYqpb3moPUpfmnBMMx2cYNUtiZmOWxMwyfkOlwcTQ9ONgSrAFd3QAwCKN1uwNt4Lj8oiFzh63gLUcbbEk5UYi77ZMCHv_72-PtL95o-DTQQA48n2AZLILEB14jN0V4-fwv2b_ACZkwxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835471746</pqid></control><display><type>article</type><title>Sample sizes required to detect interactions between two binary fixed-effects in a mixed-effects linear regression model</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Leon, Andrew C. ; Heo, Moonseong</creator><creatorcontrib>Leon, Andrew C. ; Heo, Moonseong</creatorcontrib><description>Mixed-effects linear regression models have become more widely used for analysis of repeatedly measured outcomes in clinical trials over the past decade. There are formulae and tables for estimating sample sizes required to detect the main effects of treatment and the treatment by time interactions for those models. A formula is proposed to estimate the sample size required to detect an interaction between two binary variables in a factorial design with repeated measures of a continuous outcome. The formula is based, in part, on the fact that the variance of an interaction is fourfold that of the main effect. A simulation study examines the statistical power associated with the resulting sample sizes in a mixed-effects linear regression model with a random intercept. The simulation varies the magnitude ( Δ ) of the standardized main effects and interactions, the intraclass correlation coefficient ( ρ ), and the number ( k ) of repeated measures within-subject. The results of the simulation study verify that the sample size required to detect a 2×2 interaction in a mixed-effects linear regression model is fourfold that to detect a main effect of the same magnitude.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2008.06.010</identifier><identifier>PMID: 20084090</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><ispartof>Computational statistics &amp; data analysis, 2009-01, Vol.53 (3), p.603-608</ispartof><rights>2008 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-c253c09154094e760f97fa873d1f56db84d9035df45108665f4ceca968773363</citedby><cites>FETCH-LOGICAL-c588t-c253c09154094e760f97fa873d1f56db84d9035df45108665f4ceca968773363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.csda.2008.06.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,4009,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20084090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a53_3ay_3a2009_3ai_3a3_3ap_3a603-608.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Leon, Andrew C.</creatorcontrib><creatorcontrib>Heo, Moonseong</creatorcontrib><title>Sample sizes required to detect interactions between two binary fixed-effects in a mixed-effects linear regression model</title><title>Computational statistics &amp; data analysis</title><addtitle>Comput Stat Data Anal</addtitle><description>Mixed-effects linear regression models have become more widely used for analysis of repeatedly measured outcomes in clinical trials over the past decade. There are formulae and tables for estimating sample sizes required to detect the main effects of treatment and the treatment by time interactions for those models. A formula is proposed to estimate the sample size required to detect an interaction between two binary variables in a factorial design with repeated measures of a continuous outcome. The formula is based, in part, on the fact that the variance of an interaction is fourfold that of the main effect. A simulation study examines the statistical power associated with the resulting sample sizes in a mixed-effects linear regression model with a random intercept. The simulation varies the magnitude ( Δ ) of the standardized main effects and interactions, the intraclass correlation coefficient ( ρ ), and the number ( k ) of repeated measures within-subject. The results of the simulation study verify that the sample size required to detect a 2×2 interaction in a mixed-effects linear regression model is fourfold that to detect a main effect of the same magnitude.</description><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kU9v1DAQxSMEotvCF-CAfOSSYMfxn0gICVWlgCpxoHfLa09arxJna3u3LZ-eibas6IXD2JL93s_jeVX1jtGGUSY_bhqXvW1aSnVDZUMZfVGtmFZtrbhoX1YrFKm67xQ_qU5z3lBK207p19XJYuloT1fVwy87bUcgOfyGTBLc7UICT8pMPBRwhYRYIFlXwhwzWUO5B4ik3M9kHaJNj2QID-BrGAYUZ1QTS6ZnR2OIYBOibxLkjBgyzR7GN9WrwY4Z3j7tZ9X114vr82_11c_L7-dfrmontC61awV3tGcC2-1ASTr0arBacc8GIf1ad76nXPihE4xqKcXQOXC2l1opziU_qz4fsNvdegLvIJZkR7NNYcLuzWyDeX4Tw625mfemlQon2SLgwxMgzXc7yMVMITsYRxth3mXDNBedYqpb3moPUpfmnBMMx2cYNUtiZmOWxMwyfkOlwcTQ9ONgSrAFd3QAwCKN1uwNt4Lj8oiFzh63gLUcbbEk5UYi77ZMCHv_72-PtL95o-DTQQA48n2AZLILEB14jN0V4-fwv2b_ACZkwxA</recordid><startdate>20090115</startdate><enddate>20090115</enddate><creator>Leon, Andrew C.</creator><creator>Heo, Moonseong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>NPM</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090115</creationdate><title>Sample sizes required to detect interactions between two binary fixed-effects in a mixed-effects linear regression model</title><author>Leon, Andrew C. ; Heo, Moonseong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-c253c09154094e760f97fa873d1f56db84d9035df45108665f4ceca968773363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leon, Andrew C.</creatorcontrib><creatorcontrib>Heo, Moonseong</creatorcontrib><collection>PubMed</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leon, Andrew C.</au><au>Heo, Moonseong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample sizes required to detect interactions between two binary fixed-effects in a mixed-effects linear regression model</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><addtitle>Comput Stat Data Anal</addtitle><date>2009-01-15</date><risdate>2009</risdate><volume>53</volume><issue>3</issue><spage>603</spage><epage>608</epage><pages>603-608</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>Mixed-effects linear regression models have become more widely used for analysis of repeatedly measured outcomes in clinical trials over the past decade. There are formulae and tables for estimating sample sizes required to detect the main effects of treatment and the treatment by time interactions for those models. A formula is proposed to estimate the sample size required to detect an interaction between two binary variables in a factorial design with repeated measures of a continuous outcome. The formula is based, in part, on the fact that the variance of an interaction is fourfold that of the main effect. A simulation study examines the statistical power associated with the resulting sample sizes in a mixed-effects linear regression model with a random intercept. The simulation varies the magnitude ( Δ ) of the standardized main effects and interactions, the intraclass correlation coefficient ( ρ ), and the number ( k ) of repeated measures within-subject. The results of the simulation study verify that the sample size required to detect a 2×2 interaction in a mixed-effects linear regression model is fourfold that to detect a main effect of the same magnitude.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>20084090</pmid><doi>10.1016/j.csda.2008.06.010</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2009-01, Vol.53 (3), p.603-608
issn 0167-9473
1872-7352
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2678722
source RePEc; Elsevier ScienceDirect Journals Complete
title Sample sizes required to detect interactions between two binary fixed-effects in a mixed-effects linear regression model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample%20sizes%20required%20to%20detect%20interactions%20between%20two%20binary%20fixed-effects%20in%20a%20mixed-effects%20linear%20regression%20model&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Leon,%20Andrew%20C.&rft.date=2009-01-15&rft.volume=53&rft.issue=3&rft.spage=603&rft.epage=608&rft.pages=603-608&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2008.06.010&rft_dat=%3Cproquest_pubme%3E1835471746%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835471746&rft_id=info:pmid/20084090&rft_els_id=S0167947308003241&rfr_iscdi=true