Role of tRNA-like structures in controlling plant virus replication
Transfer RNA-like structures (TLSs) that are sophisticated functional mimics of tRNAs are found at the 3′-termini of the genomes of a number of plant positive strand RNA viruses. Three natural aminoacylation identities are represented: valine, histidine, and tyrosine. Paralleling this variety in str...
Gespeichert in:
Veröffentlicht in: | Virus research 2009-02, Vol.139 (2), p.217-229 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 229 |
---|---|
container_issue | 2 |
container_start_page | 217 |
container_title | Virus research |
container_volume | 139 |
creator | Dreher, Theo W. |
description | Transfer RNA-like structures (TLSs) that are sophisticated functional mimics of tRNAs are found at the 3′-termini of the genomes of a number of plant positive strand RNA viruses. Three natural aminoacylation identities are represented: valine, histidine, and tyrosine. Paralleling this variety in structure, the roles of TLSs vary widely between different viruses. For Turnip yellow mosaic virus, the TLS must be capable of valylation in order to support infectivity, major roles being the provision of translational enhancement and down-regulation of minus strand initiation. In contrast, valylation of the Peanut clump virus TLS is not essential. An intermediate situation seems to exist for Brome mosaic virus, whose RNAs 1 and 2, but not RNA 3, need to be capable of tyrosylation to support infectivity. Other known roles for certain TLSs include: (i) the recruitment of host CCA nucleotidyltransferase as a telomerase to maintain intact 3′ CCA termini, (ii) involvement in the encapsidation of viral RNAs, and (iii) presentation of minus strand promoter elements for replicase recognition. In the latter role, the promoter elements reside within the TLS but are not functionally dependent on tRNA mimicry. The phylogenetic distribution of TLSs indicates that their evolutionary history includes frequent horizontal exchange, as has been observed for protein-coding regions of plant positive strand RNA viruses. |
doi_str_mv | 10.1016/j.virusres.2008.06.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2676847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168170208002384</els_id><sourcerecordid>66933413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-f1caf7a07f018a826aad3c49439a5f641fa57cb23dff6efbbdc1d05940d985af3</originalsourceid><addsrcrecordid>eNqFkU1P7CAUhom5RsePv2C6ctd6KC3QzY1m4ldiNDG6JgwFZWTKXKCT-O9FZ9TryhULnvOejwehIwwVBkxP5tXKhjEGHasagFdAK8CwhSaYs7pkTVf_QZMM8hIzqHfRXoxzAKCE0R20izklvMV4gqb33unCmyLd356Vzr7oIqYwqjTm6MIOhfJDCt45OzwVSyeHVHw0LoJeOqtksn44QNtGuqgPN-8-erw4f5helTd3l9fTs5tStZSm0mAlDZPADGAueU2l7IlquoZ0sjW0wUa2TM1q0htDtZnNeoV7aLsG-o630pB99HeduxxnC90rnSeTTiyDXcjwKry04ufPYJ_Fk1-JmjLKG5YDjjcBwf8bdUxiYaPSLq-l_RgFpR0hDSa_gjWQNkdCBukaVMHHbMN8TYNBvIsSc_EpSryLEkBFFpULj_7f5btsYyYDp2tA54uurA4iKqsHpXsbtEqi9_a3Hm8rsqr_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20357680</pqid></control><display><type>article</type><title>Role of tRNA-like structures in controlling plant virus replication</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Dreher, Theo W.</creator><creatorcontrib>Dreher, Theo W.</creatorcontrib><description>Transfer RNA-like structures (TLSs) that are sophisticated functional mimics of tRNAs are found at the 3′-termini of the genomes of a number of plant positive strand RNA viruses. Three natural aminoacylation identities are represented: valine, histidine, and tyrosine. Paralleling this variety in structure, the roles of TLSs vary widely between different viruses. For Turnip yellow mosaic virus, the TLS must be capable of valylation in order to support infectivity, major roles being the provision of translational enhancement and down-regulation of minus strand initiation. In contrast, valylation of the Peanut clump virus TLS is not essential. An intermediate situation seems to exist for Brome mosaic virus, whose RNAs 1 and 2, but not RNA 3, need to be capable of tyrosylation to support infectivity. Other known roles for certain TLSs include: (i) the recruitment of host CCA nucleotidyltransferase as a telomerase to maintain intact 3′ CCA termini, (ii) involvement in the encapsidation of viral RNAs, and (iii) presentation of minus strand promoter elements for replicase recognition. In the latter role, the promoter elements reside within the TLS but are not functionally dependent on tRNA mimicry. The phylogenetic distribution of TLSs indicates that their evolutionary history includes frequent horizontal exchange, as has been observed for protein-coding regions of plant positive strand RNA viruses.</description><identifier>ISSN: 0168-1702</identifier><identifier>EISSN: 1872-7492</identifier><identifier>DOI: 10.1016/j.virusres.2008.06.010</identifier><identifier>PMID: 18638511</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Aminoacylation ; Brome mosaic virus ; CCA nucleotidyltransferase ; eEF1A ; Genome, Viral ; Nucleic Acid Conformation ; Peanut clump virus ; Plant Viruses - genetics ; Plant Viruses - physiology ; Positive strand RNA viruses ; Protein Biosynthesis ; RNA Viruses - genetics ; RNA Viruses - physiology ; RNA, Transfer - chemistry ; RNA, Viral - chemistry ; Structure-Activity Relationship ; Substrate Specificity ; Translational enhancement ; tRNA mimicry ; Turnip yellow mosaic virus ; Virus Replication</subject><ispartof>Virus research, 2009-02, Vol.139 (2), p.217-229</ispartof><rights>2008 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-f1caf7a07f018a826aad3c49439a5f641fa57cb23dff6efbbdc1d05940d985af3</citedby><cites>FETCH-LOGICAL-c566t-f1caf7a07f018a826aad3c49439a5f641fa57cb23dff6efbbdc1d05940d985af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.virusres.2008.06.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18638511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dreher, Theo W.</creatorcontrib><title>Role of tRNA-like structures in controlling plant virus replication</title><title>Virus research</title><addtitle>Virus Res</addtitle><description>Transfer RNA-like structures (TLSs) that are sophisticated functional mimics of tRNAs are found at the 3′-termini of the genomes of a number of plant positive strand RNA viruses. Three natural aminoacylation identities are represented: valine, histidine, and tyrosine. Paralleling this variety in structure, the roles of TLSs vary widely between different viruses. For Turnip yellow mosaic virus, the TLS must be capable of valylation in order to support infectivity, major roles being the provision of translational enhancement and down-regulation of minus strand initiation. In contrast, valylation of the Peanut clump virus TLS is not essential. An intermediate situation seems to exist for Brome mosaic virus, whose RNAs 1 and 2, but not RNA 3, need to be capable of tyrosylation to support infectivity. Other known roles for certain TLSs include: (i) the recruitment of host CCA nucleotidyltransferase as a telomerase to maintain intact 3′ CCA termini, (ii) involvement in the encapsidation of viral RNAs, and (iii) presentation of minus strand promoter elements for replicase recognition. In the latter role, the promoter elements reside within the TLS but are not functionally dependent on tRNA mimicry. The phylogenetic distribution of TLSs indicates that their evolutionary history includes frequent horizontal exchange, as has been observed for protein-coding regions of plant positive strand RNA viruses.</description><subject>Aminoacylation</subject><subject>Brome mosaic virus</subject><subject>CCA nucleotidyltransferase</subject><subject>eEF1A</subject><subject>Genome, Viral</subject><subject>Nucleic Acid Conformation</subject><subject>Peanut clump virus</subject><subject>Plant Viruses - genetics</subject><subject>Plant Viruses - physiology</subject><subject>Positive strand RNA viruses</subject><subject>Protein Biosynthesis</subject><subject>RNA Viruses - genetics</subject><subject>RNA Viruses - physiology</subject><subject>RNA, Transfer - chemistry</subject><subject>RNA, Viral - chemistry</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><subject>Translational enhancement</subject><subject>tRNA mimicry</subject><subject>Turnip yellow mosaic virus</subject><subject>Virus Replication</subject><issn>0168-1702</issn><issn>1872-7492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1P7CAUhom5RsePv2C6ctd6KC3QzY1m4ldiNDG6JgwFZWTKXKCT-O9FZ9TryhULnvOejwehIwwVBkxP5tXKhjEGHasagFdAK8CwhSaYs7pkTVf_QZMM8hIzqHfRXoxzAKCE0R20izklvMV4gqb33unCmyLd356Vzr7oIqYwqjTm6MIOhfJDCt45OzwVSyeHVHw0LoJeOqtksn44QNtGuqgPN-8-erw4f5helTd3l9fTs5tStZSm0mAlDZPADGAueU2l7IlquoZ0sjW0wUa2TM1q0htDtZnNeoV7aLsG-o630pB99HeduxxnC90rnSeTTiyDXcjwKry04ufPYJ_Fk1-JmjLKG5YDjjcBwf8bdUxiYaPSLq-l_RgFpR0hDSa_gjWQNkdCBukaVMHHbMN8TYNBvIsSc_EpSryLEkBFFpULj_7f5btsYyYDp2tA54uurA4iKqsHpXsbtEqi9_a3Hm8rsqr_</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Dreher, Theo W.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090201</creationdate><title>Role of tRNA-like structures in controlling plant virus replication</title><author>Dreher, Theo W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-f1caf7a07f018a826aad3c49439a5f641fa57cb23dff6efbbdc1d05940d985af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aminoacylation</topic><topic>Brome mosaic virus</topic><topic>CCA nucleotidyltransferase</topic><topic>eEF1A</topic><topic>Genome, Viral</topic><topic>Nucleic Acid Conformation</topic><topic>Peanut clump virus</topic><topic>Plant Viruses - genetics</topic><topic>Plant Viruses - physiology</topic><topic>Positive strand RNA viruses</topic><topic>Protein Biosynthesis</topic><topic>RNA Viruses - genetics</topic><topic>RNA Viruses - physiology</topic><topic>RNA, Transfer - chemistry</topic><topic>RNA, Viral - chemistry</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><topic>Translational enhancement</topic><topic>tRNA mimicry</topic><topic>Turnip yellow mosaic virus</topic><topic>Virus Replication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dreher, Theo W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Virus research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dreher, Theo W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of tRNA-like structures in controlling plant virus replication</atitle><jtitle>Virus research</jtitle><addtitle>Virus Res</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>139</volume><issue>2</issue><spage>217</spage><epage>229</epage><pages>217-229</pages><issn>0168-1702</issn><eissn>1872-7492</eissn><abstract>Transfer RNA-like structures (TLSs) that are sophisticated functional mimics of tRNAs are found at the 3′-termini of the genomes of a number of plant positive strand RNA viruses. Three natural aminoacylation identities are represented: valine, histidine, and tyrosine. Paralleling this variety in structure, the roles of TLSs vary widely between different viruses. For Turnip yellow mosaic virus, the TLS must be capable of valylation in order to support infectivity, major roles being the provision of translational enhancement and down-regulation of minus strand initiation. In contrast, valylation of the Peanut clump virus TLS is not essential. An intermediate situation seems to exist for Brome mosaic virus, whose RNAs 1 and 2, but not RNA 3, need to be capable of tyrosylation to support infectivity. Other known roles for certain TLSs include: (i) the recruitment of host CCA nucleotidyltransferase as a telomerase to maintain intact 3′ CCA termini, (ii) involvement in the encapsidation of viral RNAs, and (iii) presentation of minus strand promoter elements for replicase recognition. In the latter role, the promoter elements reside within the TLS but are not functionally dependent on tRNA mimicry. The phylogenetic distribution of TLSs indicates that their evolutionary history includes frequent horizontal exchange, as has been observed for protein-coding regions of plant positive strand RNA viruses.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>18638511</pmid><doi>10.1016/j.virusres.2008.06.010</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-1702 |
ispartof | Virus research, 2009-02, Vol.139 (2), p.217-229 |
issn | 0168-1702 1872-7492 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2676847 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Aminoacylation Brome mosaic virus CCA nucleotidyltransferase eEF1A Genome, Viral Nucleic Acid Conformation Peanut clump virus Plant Viruses - genetics Plant Viruses - physiology Positive strand RNA viruses Protein Biosynthesis RNA Viruses - genetics RNA Viruses - physiology RNA, Transfer - chemistry RNA, Viral - chemistry Structure-Activity Relationship Substrate Specificity Translational enhancement tRNA mimicry Turnip yellow mosaic virus Virus Replication |
title | Role of tRNA-like structures in controlling plant virus replication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A53%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20tRNA-like%20structures%20in%20controlling%20plant%20virus%20replication&rft.jtitle=Virus%20research&rft.au=Dreher,%20Theo%20W.&rft.date=2009-02-01&rft.volume=139&rft.issue=2&rft.spage=217&rft.epage=229&rft.pages=217-229&rft.issn=0168-1702&rft.eissn=1872-7492&rft_id=info:doi/10.1016/j.virusres.2008.06.010&rft_dat=%3Cproquest_pubme%3E66933413%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20357680&rft_id=info:pmid/18638511&rft_els_id=S0168170208002384&rfr_iscdi=true |