Condensin regulates the stiffness of vertebrate centromeres
When chromosomes are aligned and bioriented at metaphase, the elastic stretch of centromeric chromatin opposes pulling forces exerted on sister kinetochores by the mitotic spindle. Here we show that condensin ATPase activity is an important regulator of centromere stiffness and function. Condensin d...
Gespeichert in:
Veröffentlicht in: | Molecular biology of the cell 2009-05, Vol.20 (9), p.2371-2380 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2380 |
---|---|
container_issue | 9 |
container_start_page | 2371 |
container_title | Molecular biology of the cell |
container_volume | 20 |
creator | Ribeiro, Susana A Gatlin, Jesse C Dong, Yimin Joglekar, Ajit Cameron, Lisa Hudson, Damien F Farr, Christine J McEwen, Bruce F Salmon, Edward D Earnshaw, William C Vagnarelli, Paola |
description | When chromosomes are aligned and bioriented at metaphase, the elastic stretch of centromeric chromatin opposes pulling forces exerted on sister kinetochores by the mitotic spindle. Here we show that condensin ATPase activity is an important regulator of centromere stiffness and function. Condensin depletion decreases the stiffness of centromeric chromatin by 50% when pulling forces are applied to kinetochores. However, condensin is dispensable for the normal level of compaction (rest length) of centromeres, which probably depends on other factors that control higher-order chromatin folding. Kinetochores also do not require condensin for their structure or motility. Loss of stiffness caused by condensin-depletion produces abnormal uncoordinated sister kinetochore movements, leads to an increase in Mad2(+) kinetochores near the metaphase plate and delays anaphase onset. |
doi_str_mv | 10.1091/mbc.E08-11-1127 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2675617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67203425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-eae167b8b0a88340e509345d0390d077eed6011257feb44586b1f9a86dc3144c3</originalsourceid><addsrcrecordid>eNpVkMtLw0AQxhdRbK2evUlO3lJns88gCFLqAwpe9LxskkkbSbJ1Ny3437u1xQcMzMB8882Pj5BLClMKOb3pinI6B51SGitTR2RMc5anXGh5HGcQeUpFxkfkLIR3AMq5VKdkRPNMUg16TG5nrq-wD02feFxuWjtgSIYVJmFo6rrHEBJXJ1v0AxY-LpMS-8G7Dj2Gc3JS2zbgxaFPyNvD_HX2lC5eHp9n94u0FIwPKVqkUhW6AKs144ACcsZFBSyHCpRCrCREeqFqLPgOvaB1brWsShaBSzYhd3vf9abosPomsK1Z-6az_tM425j_m75ZmaXbmkwqIamKBtcHA-8-NhgG0zWhxLa1PbpNMFJlwHgmovBmLyy9C8Fj_fOEgtkFbmLgBkEbSs0u8Hhx9ZftV39ImH0BRQV9kQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67203425</pqid></control><display><type>article</type><title>Condensin regulates the stiffness of vertebrate centromeres</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><creator>Ribeiro, Susana A ; Gatlin, Jesse C ; Dong, Yimin ; Joglekar, Ajit ; Cameron, Lisa ; Hudson, Damien F ; Farr, Christine J ; McEwen, Bruce F ; Salmon, Edward D ; Earnshaw, William C ; Vagnarelli, Paola</creator><contributor>Doxsey, Stephen</contributor><creatorcontrib>Ribeiro, Susana A ; Gatlin, Jesse C ; Dong, Yimin ; Joglekar, Ajit ; Cameron, Lisa ; Hudson, Damien F ; Farr, Christine J ; McEwen, Bruce F ; Salmon, Edward D ; Earnshaw, William C ; Vagnarelli, Paola ; Doxsey, Stephen</creatorcontrib><description>When chromosomes are aligned and bioriented at metaphase, the elastic stretch of centromeric chromatin opposes pulling forces exerted on sister kinetochores by the mitotic spindle. Here we show that condensin ATPase activity is an important regulator of centromere stiffness and function. Condensin depletion decreases the stiffness of centromeric chromatin by 50% when pulling forces are applied to kinetochores. However, condensin is dispensable for the normal level of compaction (rest length) of centromeres, which probably depends on other factors that control higher-order chromatin folding. Kinetochores also do not require condensin for their structure or motility. Loss of stiffness caused by condensin-depletion produces abnormal uncoordinated sister kinetochore movements, leads to an increase in Mad2(+) kinetochores near the metaphase plate and delays anaphase onset.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E08-11-1127</identifier><identifier>PMID: 19261808</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Adenosine Triphosphatases - metabolism ; Animals ; Autoantigens - metabolism ; Cell Line ; Centromere - metabolism ; Centromere - ultrastructure ; Centromere Protein A ; Chromatin - metabolism ; Chromosomal Proteins, Non-Histone - metabolism ; DNA-Binding Proteins - metabolism ; Gene Silencing ; Green Fluorescent Proteins - metabolism ; Humans ; Kinetochores - metabolism ; Kinetochores - ultrastructure ; Microtubules - ultrastructure ; Mitosis ; Multiprotein Complexes - metabolism ; Recombinant Fusion Proteins - metabolism ; Spindle Apparatus - metabolism ; Spindle Apparatus - ultrastructure ; Vertebrates - metabolism</subject><ispartof>Molecular biology of the cell, 2009-05, Vol.20 (9), p.2371-2380</ispartof><rights>2009 by The American Society for Cell Biology 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-eae167b8b0a88340e509345d0390d077eed6011257feb44586b1f9a86dc3144c3</citedby><cites>FETCH-LOGICAL-c534t-eae167b8b0a88340e509345d0390d077eed6011257feb44586b1f9a86dc3144c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2675617/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2675617/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19261808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Doxsey, Stephen</contributor><creatorcontrib>Ribeiro, Susana A</creatorcontrib><creatorcontrib>Gatlin, Jesse C</creatorcontrib><creatorcontrib>Dong, Yimin</creatorcontrib><creatorcontrib>Joglekar, Ajit</creatorcontrib><creatorcontrib>Cameron, Lisa</creatorcontrib><creatorcontrib>Hudson, Damien F</creatorcontrib><creatorcontrib>Farr, Christine J</creatorcontrib><creatorcontrib>McEwen, Bruce F</creatorcontrib><creatorcontrib>Salmon, Edward D</creatorcontrib><creatorcontrib>Earnshaw, William C</creatorcontrib><creatorcontrib>Vagnarelli, Paola</creatorcontrib><title>Condensin regulates the stiffness of vertebrate centromeres</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>When chromosomes are aligned and bioriented at metaphase, the elastic stretch of centromeric chromatin opposes pulling forces exerted on sister kinetochores by the mitotic spindle. Here we show that condensin ATPase activity is an important regulator of centromere stiffness and function. Condensin depletion decreases the stiffness of centromeric chromatin by 50% when pulling forces are applied to kinetochores. However, condensin is dispensable for the normal level of compaction (rest length) of centromeres, which probably depends on other factors that control higher-order chromatin folding. Kinetochores also do not require condensin for their structure or motility. Loss of stiffness caused by condensin-depletion produces abnormal uncoordinated sister kinetochore movements, leads to an increase in Mad2(+) kinetochores near the metaphase plate and delays anaphase onset.</description><subject>Adenosine Triphosphatases - metabolism</subject><subject>Animals</subject><subject>Autoantigens - metabolism</subject><subject>Cell Line</subject><subject>Centromere - metabolism</subject><subject>Centromere - ultrastructure</subject><subject>Centromere Protein A</subject><subject>Chromatin - metabolism</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene Silencing</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humans</subject><subject>Kinetochores - metabolism</subject><subject>Kinetochores - ultrastructure</subject><subject>Microtubules - ultrastructure</subject><subject>Mitosis</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Spindle Apparatus - metabolism</subject><subject>Spindle Apparatus - ultrastructure</subject><subject>Vertebrates - metabolism</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkMtLw0AQxhdRbK2evUlO3lJns88gCFLqAwpe9LxskkkbSbJ1Ny3437u1xQcMzMB8882Pj5BLClMKOb3pinI6B51SGitTR2RMc5anXGh5HGcQeUpFxkfkLIR3AMq5VKdkRPNMUg16TG5nrq-wD02feFxuWjtgSIYVJmFo6rrHEBJXJ1v0AxY-LpMS-8G7Dj2Gc3JS2zbgxaFPyNvD_HX2lC5eHp9n94u0FIwPKVqkUhW6AKs144ACcsZFBSyHCpRCrCREeqFqLPgOvaB1brWsShaBSzYhd3vf9abosPomsK1Z-6az_tM425j_m75ZmaXbmkwqIamKBtcHA-8-NhgG0zWhxLa1PbpNMFJlwHgmovBmLyy9C8Fj_fOEgtkFbmLgBkEbSs0u8Hhx9ZftV39ImH0BRQV9kQ</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Ribeiro, Susana A</creator><creator>Gatlin, Jesse C</creator><creator>Dong, Yimin</creator><creator>Joglekar, Ajit</creator><creator>Cameron, Lisa</creator><creator>Hudson, Damien F</creator><creator>Farr, Christine J</creator><creator>McEwen, Bruce F</creator><creator>Salmon, Edward D</creator><creator>Earnshaw, William C</creator><creator>Vagnarelli, Paola</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200905</creationdate><title>Condensin regulates the stiffness of vertebrate centromeres</title><author>Ribeiro, Susana A ; Gatlin, Jesse C ; Dong, Yimin ; Joglekar, Ajit ; Cameron, Lisa ; Hudson, Damien F ; Farr, Christine J ; McEwen, Bruce F ; Salmon, Edward D ; Earnshaw, William C ; Vagnarelli, Paola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-eae167b8b0a88340e509345d0390d077eed6011257feb44586b1f9a86dc3144c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adenosine Triphosphatases - metabolism</topic><topic>Animals</topic><topic>Autoantigens - metabolism</topic><topic>Cell Line</topic><topic>Centromere - metabolism</topic><topic>Centromere - ultrastructure</topic><topic>Centromere Protein A</topic><topic>Chromatin - metabolism</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene Silencing</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humans</topic><topic>Kinetochores - metabolism</topic><topic>Kinetochores - ultrastructure</topic><topic>Microtubules - ultrastructure</topic><topic>Mitosis</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Spindle Apparatus - metabolism</topic><topic>Spindle Apparatus - ultrastructure</topic><topic>Vertebrates - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro, Susana A</creatorcontrib><creatorcontrib>Gatlin, Jesse C</creatorcontrib><creatorcontrib>Dong, Yimin</creatorcontrib><creatorcontrib>Joglekar, Ajit</creatorcontrib><creatorcontrib>Cameron, Lisa</creatorcontrib><creatorcontrib>Hudson, Damien F</creatorcontrib><creatorcontrib>Farr, Christine J</creatorcontrib><creatorcontrib>McEwen, Bruce F</creatorcontrib><creatorcontrib>Salmon, Edward D</creatorcontrib><creatorcontrib>Earnshaw, William C</creatorcontrib><creatorcontrib>Vagnarelli, Paola</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribeiro, Susana A</au><au>Gatlin, Jesse C</au><au>Dong, Yimin</au><au>Joglekar, Ajit</au><au>Cameron, Lisa</au><au>Hudson, Damien F</au><au>Farr, Christine J</au><au>McEwen, Bruce F</au><au>Salmon, Edward D</au><au>Earnshaw, William C</au><au>Vagnarelli, Paola</au><au>Doxsey, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Condensin regulates the stiffness of vertebrate centromeres</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2009-05</date><risdate>2009</risdate><volume>20</volume><issue>9</issue><spage>2371</spage><epage>2380</epage><pages>2371-2380</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>When chromosomes are aligned and bioriented at metaphase, the elastic stretch of centromeric chromatin opposes pulling forces exerted on sister kinetochores by the mitotic spindle. Here we show that condensin ATPase activity is an important regulator of centromere stiffness and function. Condensin depletion decreases the stiffness of centromeric chromatin by 50% when pulling forces are applied to kinetochores. However, condensin is dispensable for the normal level of compaction (rest length) of centromeres, which probably depends on other factors that control higher-order chromatin folding. Kinetochores also do not require condensin for their structure or motility. Loss of stiffness caused by condensin-depletion produces abnormal uncoordinated sister kinetochore movements, leads to an increase in Mad2(+) kinetochores near the metaphase plate and delays anaphase onset.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>19261808</pmid><doi>10.1091/mbc.E08-11-1127</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-1524 |
ispartof | Molecular biology of the cell, 2009-05, Vol.20 (9), p.2371-2380 |
issn | 1059-1524 1939-4586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2675617 |
source | MEDLINE; Full-Text Journals in Chemistry (Open access); PubMed Central |
subjects | Adenosine Triphosphatases - metabolism Animals Autoantigens - metabolism Cell Line Centromere - metabolism Centromere - ultrastructure Centromere Protein A Chromatin - metabolism Chromosomal Proteins, Non-Histone - metabolism DNA-Binding Proteins - metabolism Gene Silencing Green Fluorescent Proteins - metabolism Humans Kinetochores - metabolism Kinetochores - ultrastructure Microtubules - ultrastructure Mitosis Multiprotein Complexes - metabolism Recombinant Fusion Proteins - metabolism Spindle Apparatus - metabolism Spindle Apparatus - ultrastructure Vertebrates - metabolism |
title | Condensin regulates the stiffness of vertebrate centromeres |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Condensin%20regulates%20the%20stiffness%20of%20vertebrate%20centromeres&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Ribeiro,%20Susana%20A&rft.date=2009-05&rft.volume=20&rft.issue=9&rft.spage=2371&rft.epage=2380&rft.pages=2371-2380&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E08-11-1127&rft_dat=%3Cproquest_pubme%3E67203425%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67203425&rft_id=info:pmid/19261808&rfr_iscdi=true |