Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models

The mechanism of mitochondrial damage, a key contributor to renal tubular cell death during acute kidney injury, remains largely unknown. Here, we have demonstrated a striking morphological change of mitochondria in experimental models of renal ischemia/reperfusion and cisplatin-induced nephrotoxici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2009-05, Vol.119 (5), p.1275-1285
Hauptverfasser: Brooks, Craig, Wei, Qingqing, Cho, Sung-Gyu, Dong, Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1285
container_issue 5
container_start_page 1275
container_title The Journal of clinical investigation
container_volume 119
creator Brooks, Craig
Wei, Qingqing
Cho, Sung-Gyu
Dong, Zheng
description The mechanism of mitochondrial damage, a key contributor to renal tubular cell death during acute kidney injury, remains largely unknown. Here, we have demonstrated a striking morphological change of mitochondria in experimental models of renal ischemia/reperfusion and cisplatin-induced nephrotoxicity. This change contributed to mitochondrial outer membrane permeabilization, release of apoptogenic factors, and consequent apoptosis. Following either ATP depletion or cisplatin treatment of rat renal tubular cells, mitochondrial fragmentation was observed prior to cytochrome c release and apoptosis. This mitochondrial fragmentation was inhibited by Bcl2 but not by caspase inhibitors. Dynamin-related protein 1 (Drp1), a critical mitochondrial fission protein, translocated to mitochondria early during tubular cell injury, and both siRNA knockdown of Drp1 and expression of a dominant-negative Drp1 attenuated mitochondrial fragmentation, cytochrome c release, caspase activation, and apoptosis. Further in vivo analysis revealed that mitochondrial fragmentation also occurred in proximal tubular cells in mice during renal ischemia/reperfusion and cisplatin-induced nephrotoxicity. Notably, both tubular cell apoptosis and acute kidney injury were attenuated by mdivi-1, a newly identified pharmacological inhibitor of Drp1. This study demonstrates a rapid regulation of mitochondrial dynamics during acute kidney injury and identifies mitochondrial fragmentation as what we believe to be a novel mechanism contributing to mitochondrial damage and apoptosis in vivo in mouse models of disease.
doi_str_mv 10.1172/JCI37829
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2673870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A200185943</galeid><sourcerecordid>A200185943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c678t-8816138f49fceef9b46e1756c0c64bb8e42ceb46faf8c5bd76f0fee54a4880e23</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdR7FoFf4EEL6ReTE1mMjOZG6EsVVcKhfpxJyGTOZnNmklqPsT992bZVbvQC8nFS06e83J4c4riOcHnhHTVm4_LVd2xqn9QLEjTsJJVNXtYLDCuSNl3NTspnoSwwZhQ2tDHxQnpa9q3rF0U325gSkZE7SxyCs06Orl2dvRaGDRurZi1DEhbJGSKgL7r0cI23zfJ7wRJMAbJZGLygIQdkXcj2IjmLCY8LR4pYQI8O-hp8eXd5eflh_Lq-v1qeXFVyrZjsWSMtKRmivZKAqh-oC2Qrmklli0dBga0kpCLSigmm2HsWoUVQEMFZQxDVZ8Wb_e-t2mYYZR5Ai8Mv_V6Fn7LndD8-MXqNZ_cT161OZ0OZ4OXBwPvfiQIkW9c8jbPzCuMmy7H1mSo3EOTMMC1VS57yQksZEtnQelcvsg8YU1P68yf38PnM0JO9d6G10cNmYnwK04ihcBXn27-n73-esy-usOuQZi4Ds6k3a-HY_BsD0rvQvCg_kZIMN9tGv-zaRl9cTfyf-BhterfAtbM5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200574545</pqid></control><display><type>article</type><title>Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Brooks, Craig ; Wei, Qingqing ; Cho, Sung-Gyu ; Dong, Zheng</creator><creatorcontrib>Brooks, Craig ; Wei, Qingqing ; Cho, Sung-Gyu ; Dong, Zheng</creatorcontrib><description>The mechanism of mitochondrial damage, a key contributor to renal tubular cell death during acute kidney injury, remains largely unknown. Here, we have demonstrated a striking morphological change of mitochondria in experimental models of renal ischemia/reperfusion and cisplatin-induced nephrotoxicity. This change contributed to mitochondrial outer membrane permeabilization, release of apoptogenic factors, and consequent apoptosis. Following either ATP depletion or cisplatin treatment of rat renal tubular cells, mitochondrial fragmentation was observed prior to cytochrome c release and apoptosis. This mitochondrial fragmentation was inhibited by Bcl2 but not by caspase inhibitors. Dynamin-related protein 1 (Drp1), a critical mitochondrial fission protein, translocated to mitochondria early during tubular cell injury, and both siRNA knockdown of Drp1 and expression of a dominant-negative Drp1 attenuated mitochondrial fragmentation, cytochrome c release, caspase activation, and apoptosis. Further in vivo analysis revealed that mitochondrial fragmentation also occurred in proximal tubular cells in mice during renal ischemia/reperfusion and cisplatin-induced nephrotoxicity. Notably, both tubular cell apoptosis and acute kidney injury were attenuated by mdivi-1, a newly identified pharmacological inhibitor of Drp1. This study demonstrates a rapid regulation of mitochondrial dynamics during acute kidney injury and identifies mitochondrial fragmentation as what we believe to be a novel mechanism contributing to mitochondrial damage and apoptosis in vivo in mouse models of disease.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI37829</identifier><identifier>PMID: 19349686</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Adenosine Triphosphate - deficiency ; Animals ; Apoptosis ; Apoptosis - drug effects ; Biomedical research ; Caspase Inhibitors ; Cell culture ; Cell death ; Cell Line ; Cells, Cultured ; Cisplatin - pharmacology ; Complications and side effects ; Cytochrome ; Cytochromes c - metabolism ; Drug therapy ; Dynamins - genetics ; Dynamins - metabolism ; Enzyme Inhibitors - pharmacology ; Enzyme Inhibitors - therapeutic use ; GTP Phosphohydrolases - antagonists &amp; inhibitors ; GTP Phosphohydrolases - genetics ; Imaging, Three-Dimensional ; Ischemia ; Kidney diseases ; Kidney Tubular Necrosis, Acute - chemically induced ; Kidney Tubular Necrosis, Acute - pathology ; Kidney Tubular Necrosis, Acute - prevention &amp; control ; Kidney Tubules, Proximal - cytology ; Kidneys ; Male ; Management ; Mice ; Mice, Inbred C57BL ; Microtubule-Associated Proteins - antagonists &amp; inhibitors ; Microtubule-Associated Proteins - genetics ; Mitochondria ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondria - ultrastructure ; Mitochondrial diseases ; Morphology ; Physiological aspects ; Proteins ; Proto-Oncogene Proteins c-bcl-2 - genetics ; Rats ; Reperfusion Injury - pathology ; Reperfusion Injury - prevention &amp; control ; Risk factors ; RNA, Small Interfering - genetics ; Sodium Azide - pharmacology</subject><ispartof>The Journal of clinical investigation, 2009-05, Vol.119 (5), p.1275-1285</ispartof><rights>COPYRIGHT 2009 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation May 2009</rights><rights>Copyright © 2009, American Society for Clinical Investigation 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c678t-8816138f49fceef9b46e1756c0c64bb8e42ceb46faf8c5bd76f0fee54a4880e23</citedby><cites>FETCH-LOGICAL-c678t-8816138f49fceef9b46e1756c0c64bb8e42ceb46faf8c5bd76f0fee54a4880e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673870/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673870/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19349686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brooks, Craig</creatorcontrib><creatorcontrib>Wei, Qingqing</creatorcontrib><creatorcontrib>Cho, Sung-Gyu</creatorcontrib><creatorcontrib>Dong, Zheng</creatorcontrib><title>Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>The mechanism of mitochondrial damage, a key contributor to renal tubular cell death during acute kidney injury, remains largely unknown. Here, we have demonstrated a striking morphological change of mitochondria in experimental models of renal ischemia/reperfusion and cisplatin-induced nephrotoxicity. This change contributed to mitochondrial outer membrane permeabilization, release of apoptogenic factors, and consequent apoptosis. Following either ATP depletion or cisplatin treatment of rat renal tubular cells, mitochondrial fragmentation was observed prior to cytochrome c release and apoptosis. This mitochondrial fragmentation was inhibited by Bcl2 but not by caspase inhibitors. Dynamin-related protein 1 (Drp1), a critical mitochondrial fission protein, translocated to mitochondria early during tubular cell injury, and both siRNA knockdown of Drp1 and expression of a dominant-negative Drp1 attenuated mitochondrial fragmentation, cytochrome c release, caspase activation, and apoptosis. Further in vivo analysis revealed that mitochondrial fragmentation also occurred in proximal tubular cells in mice during renal ischemia/reperfusion and cisplatin-induced nephrotoxicity. Notably, both tubular cell apoptosis and acute kidney injury were attenuated by mdivi-1, a newly identified pharmacological inhibitor of Drp1. This study demonstrates a rapid regulation of mitochondrial dynamics during acute kidney injury and identifies mitochondrial fragmentation as what we believe to be a novel mechanism contributing to mitochondrial damage and apoptosis in vivo in mouse models of disease.</description><subject>Adenosine Triphosphate - deficiency</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biomedical research</subject><subject>Caspase Inhibitors</subject><subject>Cell culture</subject><subject>Cell death</subject><subject>Cell Line</subject><subject>Cells, Cultured</subject><subject>Cisplatin - pharmacology</subject><subject>Complications and side effects</subject><subject>Cytochrome</subject><subject>Cytochromes c - metabolism</subject><subject>Drug therapy</subject><subject>Dynamins - genetics</subject><subject>Dynamins - metabolism</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzyme Inhibitors - therapeutic use</subject><subject>GTP Phosphohydrolases - antagonists &amp; inhibitors</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>Imaging, Three-Dimensional</subject><subject>Ischemia</subject><subject>Kidney diseases</subject><subject>Kidney Tubular Necrosis, Acute - chemically induced</subject><subject>Kidney Tubular Necrosis, Acute - pathology</subject><subject>Kidney Tubular Necrosis, Acute - prevention &amp; control</subject><subject>Kidney Tubules, Proximal - cytology</subject><subject>Kidneys</subject><subject>Male</subject><subject>Management</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microtubule-Associated Proteins - antagonists &amp; inhibitors</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondria - ultrastructure</subject><subject>Mitochondrial diseases</subject><subject>Morphology</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-bcl-2 - genetics</subject><subject>Rats</subject><subject>Reperfusion Injury - pathology</subject><subject>Reperfusion Injury - prevention &amp; control</subject><subject>Risk factors</subject><subject>RNA, Small Interfering - genetics</subject><subject>Sodium Azide - pharmacology</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkl1rFDEUhgdR7FoFf4EEL6ReTE1mMjOZG6EsVVcKhfpxJyGTOZnNmklqPsT992bZVbvQC8nFS06e83J4c4riOcHnhHTVm4_LVd2xqn9QLEjTsJJVNXtYLDCuSNl3NTspnoSwwZhQ2tDHxQnpa9q3rF0U325gSkZE7SxyCs06Orl2dvRaGDRurZi1DEhbJGSKgL7r0cI23zfJ7wRJMAbJZGLygIQdkXcj2IjmLCY8LR4pYQI8O-hp8eXd5eflh_Lq-v1qeXFVyrZjsWSMtKRmivZKAqh-oC2Qrmklli0dBga0kpCLSigmm2HsWoUVQEMFZQxDVZ8Wb_e-t2mYYZR5Ai8Mv_V6Fn7LndD8-MXqNZ_cT161OZ0OZ4OXBwPvfiQIkW9c8jbPzCuMmy7H1mSo3EOTMMC1VS57yQksZEtnQelcvsg8YU1P68yf38PnM0JO9d6G10cNmYnwK04ihcBXn27-n73-esy-usOuQZi4Ds6k3a-HY_BsD0rvQvCg_kZIMN9tGv-zaRl9cTfyf-BhterfAtbM5A</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Brooks, Craig</creator><creator>Wei, Qingqing</creator><creator>Cho, Sung-Gyu</creator><creator>Dong, Zheng</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>5PM</scope></search><sort><creationdate>20090501</creationdate><title>Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models</title><author>Brooks, Craig ; Wei, Qingqing ; Cho, Sung-Gyu ; Dong, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c678t-8816138f49fceef9b46e1756c0c64bb8e42ceb46faf8c5bd76f0fee54a4880e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adenosine Triphosphate - deficiency</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biomedical research</topic><topic>Caspase Inhibitors</topic><topic>Cell culture</topic><topic>Cell death</topic><topic>Cell Line</topic><topic>Cells, Cultured</topic><topic>Cisplatin - pharmacology</topic><topic>Complications and side effects</topic><topic>Cytochrome</topic><topic>Cytochromes c - metabolism</topic><topic>Drug therapy</topic><topic>Dynamins - genetics</topic><topic>Dynamins - metabolism</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzyme Inhibitors - therapeutic use</topic><topic>GTP Phosphohydrolases - antagonists &amp; inhibitors</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>Imaging, Three-Dimensional</topic><topic>Ischemia</topic><topic>Kidney diseases</topic><topic>Kidney Tubular Necrosis, Acute - chemically induced</topic><topic>Kidney Tubular Necrosis, Acute - pathology</topic><topic>Kidney Tubular Necrosis, Acute - prevention &amp; control</topic><topic>Kidney Tubules, Proximal - cytology</topic><topic>Kidneys</topic><topic>Male</topic><topic>Management</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microtubule-Associated Proteins - antagonists &amp; inhibitors</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondria - ultrastructure</topic><topic>Mitochondrial diseases</topic><topic>Morphology</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-bcl-2 - genetics</topic><topic>Rats</topic><topic>Reperfusion Injury - pathology</topic><topic>Reperfusion Injury - prevention &amp; control</topic><topic>Risk factors</topic><topic>RNA, Small Interfering - genetics</topic><topic>Sodium Azide - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brooks, Craig</creatorcontrib><creatorcontrib>Wei, Qingqing</creatorcontrib><creatorcontrib>Cho, Sung-Gyu</creatorcontrib><creatorcontrib>Dong, Zheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brooks, Craig</au><au>Wei, Qingqing</au><au>Cho, Sung-Gyu</au><au>Dong, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2009-05-01</date><risdate>2009</risdate><volume>119</volume><issue>5</issue><spage>1275</spage><epage>1285</epage><pages>1275-1285</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>The mechanism of mitochondrial damage, a key contributor to renal tubular cell death during acute kidney injury, remains largely unknown. Here, we have demonstrated a striking morphological change of mitochondria in experimental models of renal ischemia/reperfusion and cisplatin-induced nephrotoxicity. This change contributed to mitochondrial outer membrane permeabilization, release of apoptogenic factors, and consequent apoptosis. Following either ATP depletion or cisplatin treatment of rat renal tubular cells, mitochondrial fragmentation was observed prior to cytochrome c release and apoptosis. This mitochondrial fragmentation was inhibited by Bcl2 but not by caspase inhibitors. Dynamin-related protein 1 (Drp1), a critical mitochondrial fission protein, translocated to mitochondria early during tubular cell injury, and both siRNA knockdown of Drp1 and expression of a dominant-negative Drp1 attenuated mitochondrial fragmentation, cytochrome c release, caspase activation, and apoptosis. Further in vivo analysis revealed that mitochondrial fragmentation also occurred in proximal tubular cells in mice during renal ischemia/reperfusion and cisplatin-induced nephrotoxicity. Notably, both tubular cell apoptosis and acute kidney injury were attenuated by mdivi-1, a newly identified pharmacological inhibitor of Drp1. This study demonstrates a rapid regulation of mitochondrial dynamics during acute kidney injury and identifies mitochondrial fragmentation as what we believe to be a novel mechanism contributing to mitochondrial damage and apoptosis in vivo in mouse models of disease.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>19349686</pmid><doi>10.1172/JCI37829</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2009-05, Vol.119 (5), p.1275-1285
issn 0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2673870
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Adenosine Triphosphate - deficiency
Animals
Apoptosis
Apoptosis - drug effects
Biomedical research
Caspase Inhibitors
Cell culture
Cell death
Cell Line
Cells, Cultured
Cisplatin - pharmacology
Complications and side effects
Cytochrome
Cytochromes c - metabolism
Drug therapy
Dynamins - genetics
Dynamins - metabolism
Enzyme Inhibitors - pharmacology
Enzyme Inhibitors - therapeutic use
GTP Phosphohydrolases - antagonists & inhibitors
GTP Phosphohydrolases - genetics
Imaging, Three-Dimensional
Ischemia
Kidney diseases
Kidney Tubular Necrosis, Acute - chemically induced
Kidney Tubular Necrosis, Acute - pathology
Kidney Tubular Necrosis, Acute - prevention & control
Kidney Tubules, Proximal - cytology
Kidneys
Male
Management
Mice
Mice, Inbred C57BL
Microtubule-Associated Proteins - antagonists & inhibitors
Microtubule-Associated Proteins - genetics
Mitochondria
Mitochondria - metabolism
Mitochondria - pathology
Mitochondria - ultrastructure
Mitochondrial diseases
Morphology
Physiological aspects
Proteins
Proto-Oncogene Proteins c-bcl-2 - genetics
Rats
Reperfusion Injury - pathology
Reperfusion Injury - prevention & control
Risk factors
RNA, Small Interfering - genetics
Sodium Azide - pharmacology
title Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20mitochondrial%20dynamics%20in%20acute%20kidney%20injury%20in%20cell%20culture%20and%20rodent%20models&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Brooks,%20Craig&rft.date=2009-05-01&rft.volume=119&rft.issue=5&rft.spage=1275&rft.epage=1285&rft.pages=1275-1285&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI37829&rft_dat=%3Cgale_pubme%3EA200185943%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200574545&rft_id=info:pmid/19349686&rft_galeid=A200185943&rfr_iscdi=true