Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells

Autophagy can promote cell survival or cell death, but the molecular basis underlying its dual role in cancer remains obscure. Here we demonstrate that delta(9)-tetrahydrocannabinol (THC), the main active component of marijuana, induces human glioma cell death through stimulation of autophagy. Our d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2009-05, Vol.119 (5), p.1359-1372
Hauptverfasser: Salazar, María, Carracedo, Arkaitz, Salanueva, Iñigo J, Hernández-Tiedra, Sonia, Lorente, Mar, Egia, Ainara, Vázquez, Patricia, Blázquez, Cristina, Torres, Sofía, García, Stephane, Nowak, Jonathan, Fimia, Gian María, Piacentini, Mauro, Cecconi, Francesco, Pandolfi, Pier Paolo, González-Feria, Luis, Iovanna, Juan L, Guzmán, Manuel, Boya, Patricia, Velasco, Guillermo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1372
container_issue 5
container_start_page 1359
container_title The Journal of clinical investigation
container_volume 119
creator Salazar, María
Carracedo, Arkaitz
Salanueva, Iñigo J
Hernández-Tiedra, Sonia
Lorente, Mar
Egia, Ainara
Vázquez, Patricia
Blázquez, Cristina
Torres, Sofía
García, Stephane
Nowak, Jonathan
Fimia, Gian María
Piacentini, Mauro
Cecconi, Francesco
Pandolfi, Pier Paolo
González-Feria, Luis
Iovanna, Juan L
Guzmán, Manuel
Boya, Patricia
Velasco, Guillermo
description Autophagy can promote cell survival or cell death, but the molecular basis underlying its dual role in cancer remains obscure. Here we demonstrate that delta(9)-tetrahydrocannabinol (THC), the main active component of marijuana, induces human glioma cell death through stimulation of autophagy. Our data indicate that THC induced ceramide accumulation and eukaryotic translation initiation factor 2alpha (eIF2alpha) phosphorylation and thereby activated an ER stress response that promoted autophagy via tribbles homolog 3-dependent (TRB3-dependent) inhibition of the Akt/mammalian target of rapamycin complex 1 (mTORC1) axis. We also showed that autophagy is upstream of apoptosis in cannabinoid-induced human and mouse cancer cell death and that activation of this pathway was necessary for the antitumor action of cannabinoids in vivo. These findings describe a mechanism by which THC can promote the autophagic death of human and mouse cancer cells and provide evidence that cannabinoid administration may be an effective therapeutic strategy for targeting human cancers.
doi_str_mv 10.1172/jci37948
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2673842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A200185950</galeid><sourcerecordid>A200185950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-fb4ef4a9235cd6360ee9fd61edf291bf08ee2e2d36e8ad406c0715b7131db2f83</originalsourceid><addsrcrecordid>eNpVkd1rFDEUxYModlsF_wIJPkhfxuZzPl6EsrRaKQhFn0MmuTOTJTNZJ4nQ_77p7uLH04V7f_dwOAehd5R8orRhVzvjeNOJ9gXaUCnbqmW8fYk2hDBadQ1vz9B5jDtCqBBSvEZntBNM0oZsUNjqZdG9W4KzWJvkwoLdYrOBiHVOYT_p8bGawTqdwGID3mMLOk04TWvI44RjcnP2-vAZBnzzUDYrxFhk8JRnveDRuzDrw298g14N2kd4e5oX6OftzY_t1-r--5e77fV9ZSTnqRp6AYPQHePS2JrXBKAbbE3BDqyj_UBaAAbM8hpabQWpDWmo7BvKqe3Z0PIL9Pmou899cW9gSav2ar-6Wa-PKmin_r8sblJj-K1YXfISrAh8OAms4VeGmNQu5HUpnhUjRDasaUSBPh6hUXtQE2ifphh8fg4jqusC0lZ2khTw8giaNcS4wvDHCSXquUL1bXt3qLCg7_91_hc8dcafACFDmOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200572774</pqid></control><display><type>article</type><title>Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Salazar, María ; Carracedo, Arkaitz ; Salanueva, Iñigo J ; Hernández-Tiedra, Sonia ; Lorente, Mar ; Egia, Ainara ; Vázquez, Patricia ; Blázquez, Cristina ; Torres, Sofía ; García, Stephane ; Nowak, Jonathan ; Fimia, Gian María ; Piacentini, Mauro ; Cecconi, Francesco ; Pandolfi, Pier Paolo ; González-Feria, Luis ; Iovanna, Juan L ; Guzmán, Manuel ; Boya, Patricia ; Velasco, Guillermo</creator><creatorcontrib>Salazar, María ; Carracedo, Arkaitz ; Salanueva, Iñigo J ; Hernández-Tiedra, Sonia ; Lorente, Mar ; Egia, Ainara ; Vázquez, Patricia ; Blázquez, Cristina ; Torres, Sofía ; García, Stephane ; Nowak, Jonathan ; Fimia, Gian María ; Piacentini, Mauro ; Cecconi, Francesco ; Pandolfi, Pier Paolo ; González-Feria, Luis ; Iovanna, Juan L ; Guzmán, Manuel ; Boya, Patricia ; Velasco, Guillermo</creatorcontrib><description>Autophagy can promote cell survival or cell death, but the molecular basis underlying its dual role in cancer remains obscure. Here we demonstrate that delta(9)-tetrahydrocannabinol (THC), the main active component of marijuana, induces human glioma cell death through stimulation of autophagy. Our data indicate that THC induced ceramide accumulation and eukaryotic translation initiation factor 2alpha (eIF2alpha) phosphorylation and thereby activated an ER stress response that promoted autophagy via tribbles homolog 3-dependent (TRB3-dependent) inhibition of the Akt/mammalian target of rapamycin complex 1 (mTORC1) axis. We also showed that autophagy is upstream of apoptosis in cannabinoid-induced human and mouse cancer cell death and that activation of this pathway was necessary for the antitumor action of cannabinoids in vivo. These findings describe a mechanism by which THC can promote the autophagic death of human and mouse cancer cells and provide evidence that cannabinoid administration may be an effective therapeutic strategy for targeting human cancers.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/jci37948</identifier><identifier>PMID: 19425170</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Amino Acid Chloromethyl Ketones - pharmacology ; Animals ; Apoptosis - drug effects ; Apoptosis - physiology ; Autophagy - drug effects ; Autophagy - physiology ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Biomedical research ; Cannabinoids ; Cannabinoids - pharmacology ; Cannabinoids - therapeutic use ; Caspase 3 - metabolism ; Causes of ; Cell Cycle Proteins - metabolism ; Cell death ; Cell Death - drug effects ; Cell Death - physiology ; Cell Line, Transformed ; Cell Line, Tumor ; Control ; Dronabinol - pharmacology ; Dronabinol - therapeutic use ; Endoplasmic Reticulum - drug effects ; Endoplasmic Reticulum - pathology ; Enzyme Inhibitors - pharmacology ; Eukaryotic Initiation Factor-2 - metabolism ; Genetic aspects ; Glioma - drug therapy ; Glioma - metabolism ; Glioma - pathology ; Gliomas ; Health aspects ; Humans ; Mechanistic Target of Rapamycin Complex 1 ; Mice ; Microtubule-Associated Proteins - metabolism ; Models, Biological ; Multiprotein Complexes ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Phagocytosis ; Phosphorylation - drug effects ; Physiological aspects ; Protein-Serine-Threonine Kinases - metabolism ; Proteins ; Proto-Oncogene Proteins c-akt - metabolism ; Repressor Proteins - metabolism ; Ribosomal Protein S6 Kinases - metabolism ; Risk factors ; TOR Serine-Threonine Kinases ; Transcription Factors - metabolism ; Xenograft Model Antitumor Assays</subject><ispartof>The Journal of clinical investigation, 2009-05, Vol.119 (5), p.1359-1372</ispartof><rights>COPYRIGHT 2009 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation May 2009</rights><rights>Copyright © 2009, American Society for Clinical Investigation 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-fb4ef4a9235cd6360ee9fd61edf291bf08ee2e2d36e8ad406c0715b7131db2f83</citedby><cites>FETCH-LOGICAL-c533t-fb4ef4a9235cd6360ee9fd61edf291bf08ee2e2d36e8ad406c0715b7131db2f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673842/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673842/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19425170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salazar, María</creatorcontrib><creatorcontrib>Carracedo, Arkaitz</creatorcontrib><creatorcontrib>Salanueva, Iñigo J</creatorcontrib><creatorcontrib>Hernández-Tiedra, Sonia</creatorcontrib><creatorcontrib>Lorente, Mar</creatorcontrib><creatorcontrib>Egia, Ainara</creatorcontrib><creatorcontrib>Vázquez, Patricia</creatorcontrib><creatorcontrib>Blázquez, Cristina</creatorcontrib><creatorcontrib>Torres, Sofía</creatorcontrib><creatorcontrib>García, Stephane</creatorcontrib><creatorcontrib>Nowak, Jonathan</creatorcontrib><creatorcontrib>Fimia, Gian María</creatorcontrib><creatorcontrib>Piacentini, Mauro</creatorcontrib><creatorcontrib>Cecconi, Francesco</creatorcontrib><creatorcontrib>Pandolfi, Pier Paolo</creatorcontrib><creatorcontrib>González-Feria, Luis</creatorcontrib><creatorcontrib>Iovanna, Juan L</creatorcontrib><creatorcontrib>Guzmán, Manuel</creatorcontrib><creatorcontrib>Boya, Patricia</creatorcontrib><creatorcontrib>Velasco, Guillermo</creatorcontrib><title>Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Autophagy can promote cell survival or cell death, but the molecular basis underlying its dual role in cancer remains obscure. Here we demonstrate that delta(9)-tetrahydrocannabinol (THC), the main active component of marijuana, induces human glioma cell death through stimulation of autophagy. Our data indicate that THC induced ceramide accumulation and eukaryotic translation initiation factor 2alpha (eIF2alpha) phosphorylation and thereby activated an ER stress response that promoted autophagy via tribbles homolog 3-dependent (TRB3-dependent) inhibition of the Akt/mammalian target of rapamycin complex 1 (mTORC1) axis. We also showed that autophagy is upstream of apoptosis in cannabinoid-induced human and mouse cancer cell death and that activation of this pathway was necessary for the antitumor action of cannabinoids in vivo. These findings describe a mechanism by which THC can promote the autophagic death of human and mouse cancer cells and provide evidence that cannabinoid administration may be an effective therapeutic strategy for targeting human cancers.</description><subject>Amino Acid Chloromethyl Ketones - pharmacology</subject><subject>Animals</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - physiology</subject><subject>Autophagy - drug effects</subject><subject>Autophagy - physiology</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Biomedical research</subject><subject>Cannabinoids</subject><subject>Cannabinoids - pharmacology</subject><subject>Cannabinoids - therapeutic use</subject><subject>Caspase 3 - metabolism</subject><subject>Causes of</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell death</subject><subject>Cell Death - drug effects</subject><subject>Cell Death - physiology</subject><subject>Cell Line, Transformed</subject><subject>Cell Line, Tumor</subject><subject>Control</subject><subject>Dronabinol - pharmacology</subject><subject>Dronabinol - therapeutic use</subject><subject>Endoplasmic Reticulum - drug effects</subject><subject>Endoplasmic Reticulum - pathology</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Eukaryotic Initiation Factor-2 - metabolism</subject><subject>Genetic aspects</subject><subject>Glioma - drug therapy</subject><subject>Glioma - metabolism</subject><subject>Glioma - pathology</subject><subject>Gliomas</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Models, Biological</subject><subject>Multiprotein Complexes</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Phagocytosis</subject><subject>Phosphorylation - drug effects</subject><subject>Physiological aspects</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Repressor Proteins - metabolism</subject><subject>Ribosomal Protein S6 Kinases - metabolism</subject><subject>Risk factors</subject><subject>TOR Serine-Threonine Kinases</subject><subject>Transcription Factors - metabolism</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><recordid>eNpVkd1rFDEUxYModlsF_wIJPkhfxuZzPl6EsrRaKQhFn0MmuTOTJTNZJ4nQ_77p7uLH04V7f_dwOAehd5R8orRhVzvjeNOJ9gXaUCnbqmW8fYk2hDBadQ1vz9B5jDtCqBBSvEZntBNM0oZsUNjqZdG9W4KzWJvkwoLdYrOBiHVOYT_p8bGawTqdwGID3mMLOk04TWvI44RjcnP2-vAZBnzzUDYrxFhk8JRnveDRuzDrw298g14N2kd4e5oX6OftzY_t1-r--5e77fV9ZSTnqRp6AYPQHePS2JrXBKAbbE3BDqyj_UBaAAbM8hpabQWpDWmo7BvKqe3Z0PIL9Pmou899cW9gSav2ar-6Wa-PKmin_r8sblJj-K1YXfISrAh8OAms4VeGmNQu5HUpnhUjRDasaUSBPh6hUXtQE2ifphh8fg4jqusC0lZ2khTw8giaNcS4wvDHCSXquUL1bXt3qLCg7_91_hc8dcafACFDmOg</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Salazar, María</creator><creator>Carracedo, Arkaitz</creator><creator>Salanueva, Iñigo J</creator><creator>Hernández-Tiedra, Sonia</creator><creator>Lorente, Mar</creator><creator>Egia, Ainara</creator><creator>Vázquez, Patricia</creator><creator>Blázquez, Cristina</creator><creator>Torres, Sofía</creator><creator>García, Stephane</creator><creator>Nowak, Jonathan</creator><creator>Fimia, Gian María</creator><creator>Piacentini, Mauro</creator><creator>Cecconi, Francesco</creator><creator>Pandolfi, Pier Paolo</creator><creator>González-Feria, Luis</creator><creator>Iovanna, Juan L</creator><creator>Guzmán, Manuel</creator><creator>Boya, Patricia</creator><creator>Velasco, Guillermo</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>5PM</scope></search><sort><creationdate>20090501</creationdate><title>Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells</title><author>Salazar, María ; Carracedo, Arkaitz ; Salanueva, Iñigo J ; Hernández-Tiedra, Sonia ; Lorente, Mar ; Egia, Ainara ; Vázquez, Patricia ; Blázquez, Cristina ; Torres, Sofía ; García, Stephane ; Nowak, Jonathan ; Fimia, Gian María ; Piacentini, Mauro ; Cecconi, Francesco ; Pandolfi, Pier Paolo ; González-Feria, Luis ; Iovanna, Juan L ; Guzmán, Manuel ; Boya, Patricia ; Velasco, Guillermo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-fb4ef4a9235cd6360ee9fd61edf291bf08ee2e2d36e8ad406c0715b7131db2f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Chloromethyl Ketones - pharmacology</topic><topic>Animals</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - physiology</topic><topic>Autophagy - drug effects</topic><topic>Autophagy - physiology</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Biomedical research</topic><topic>Cannabinoids</topic><topic>Cannabinoids - pharmacology</topic><topic>Cannabinoids - therapeutic use</topic><topic>Caspase 3 - metabolism</topic><topic>Causes of</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell death</topic><topic>Cell Death - drug effects</topic><topic>Cell Death - physiology</topic><topic>Cell Line, Transformed</topic><topic>Cell Line, Tumor</topic><topic>Control</topic><topic>Dronabinol - pharmacology</topic><topic>Dronabinol - therapeutic use</topic><topic>Endoplasmic Reticulum - drug effects</topic><topic>Endoplasmic Reticulum - pathology</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Eukaryotic Initiation Factor-2 - metabolism</topic><topic>Genetic aspects</topic><topic>Glioma - drug therapy</topic><topic>Glioma - metabolism</topic><topic>Glioma - pathology</topic><topic>Gliomas</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Models, Biological</topic><topic>Multiprotein Complexes</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Phagocytosis</topic><topic>Phosphorylation - drug effects</topic><topic>Physiological aspects</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Repressor Proteins - metabolism</topic><topic>Ribosomal Protein S6 Kinases - metabolism</topic><topic>Risk factors</topic><topic>TOR Serine-Threonine Kinases</topic><topic>Transcription Factors - metabolism</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salazar, María</creatorcontrib><creatorcontrib>Carracedo, Arkaitz</creatorcontrib><creatorcontrib>Salanueva, Iñigo J</creatorcontrib><creatorcontrib>Hernández-Tiedra, Sonia</creatorcontrib><creatorcontrib>Lorente, Mar</creatorcontrib><creatorcontrib>Egia, Ainara</creatorcontrib><creatorcontrib>Vázquez, Patricia</creatorcontrib><creatorcontrib>Blázquez, Cristina</creatorcontrib><creatorcontrib>Torres, Sofía</creatorcontrib><creatorcontrib>García, Stephane</creatorcontrib><creatorcontrib>Nowak, Jonathan</creatorcontrib><creatorcontrib>Fimia, Gian María</creatorcontrib><creatorcontrib>Piacentini, Mauro</creatorcontrib><creatorcontrib>Cecconi, Francesco</creatorcontrib><creatorcontrib>Pandolfi, Pier Paolo</creatorcontrib><creatorcontrib>González-Feria, Luis</creatorcontrib><creatorcontrib>Iovanna, Juan L</creatorcontrib><creatorcontrib>Guzmán, Manuel</creatorcontrib><creatorcontrib>Boya, Patricia</creatorcontrib><creatorcontrib>Velasco, Guillermo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salazar, María</au><au>Carracedo, Arkaitz</au><au>Salanueva, Iñigo J</au><au>Hernández-Tiedra, Sonia</au><au>Lorente, Mar</au><au>Egia, Ainara</au><au>Vázquez, Patricia</au><au>Blázquez, Cristina</au><au>Torres, Sofía</au><au>García, Stephane</au><au>Nowak, Jonathan</au><au>Fimia, Gian María</au><au>Piacentini, Mauro</au><au>Cecconi, Francesco</au><au>Pandolfi, Pier Paolo</au><au>González-Feria, Luis</au><au>Iovanna, Juan L</au><au>Guzmán, Manuel</au><au>Boya, Patricia</au><au>Velasco, Guillermo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2009-05-01</date><risdate>2009</risdate><volume>119</volume><issue>5</issue><spage>1359</spage><epage>1372</epage><pages>1359-1372</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Autophagy can promote cell survival or cell death, but the molecular basis underlying its dual role in cancer remains obscure. Here we demonstrate that delta(9)-tetrahydrocannabinol (THC), the main active component of marijuana, induces human glioma cell death through stimulation of autophagy. Our data indicate that THC induced ceramide accumulation and eukaryotic translation initiation factor 2alpha (eIF2alpha) phosphorylation and thereby activated an ER stress response that promoted autophagy via tribbles homolog 3-dependent (TRB3-dependent) inhibition of the Akt/mammalian target of rapamycin complex 1 (mTORC1) axis. We also showed that autophagy is upstream of apoptosis in cannabinoid-induced human and mouse cancer cell death and that activation of this pathway was necessary for the antitumor action of cannabinoids in vivo. These findings describe a mechanism by which THC can promote the autophagic death of human and mouse cancer cells and provide evidence that cannabinoid administration may be an effective therapeutic strategy for targeting human cancers.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>19425170</pmid><doi>10.1172/jci37948</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2009-05, Vol.119 (5), p.1359-1372
issn 0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2673842
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Amino Acid Chloromethyl Ketones - pharmacology
Animals
Apoptosis - drug effects
Apoptosis - physiology
Autophagy - drug effects
Autophagy - physiology
Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - metabolism
Biomedical research
Cannabinoids
Cannabinoids - pharmacology
Cannabinoids - therapeutic use
Caspase 3 - metabolism
Causes of
Cell Cycle Proteins - metabolism
Cell death
Cell Death - drug effects
Cell Death - physiology
Cell Line, Transformed
Cell Line, Tumor
Control
Dronabinol - pharmacology
Dronabinol - therapeutic use
Endoplasmic Reticulum - drug effects
Endoplasmic Reticulum - pathology
Enzyme Inhibitors - pharmacology
Eukaryotic Initiation Factor-2 - metabolism
Genetic aspects
Glioma - drug therapy
Glioma - metabolism
Glioma - pathology
Gliomas
Health aspects
Humans
Mechanistic Target of Rapamycin Complex 1
Mice
Microtubule-Associated Proteins - metabolism
Models, Biological
Multiprotein Complexes
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
Phagocytosis
Phosphorylation - drug effects
Physiological aspects
Protein-Serine-Threonine Kinases - metabolism
Proteins
Proto-Oncogene Proteins c-akt - metabolism
Repressor Proteins - metabolism
Ribosomal Protein S6 Kinases - metabolism
Risk factors
TOR Serine-Threonine Kinases
Transcription Factors - metabolism
Xenograft Model Antitumor Assays
title Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T04%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cannabinoid%20action%20induces%20autophagy-mediated%20cell%20death%20through%20stimulation%20of%20ER%20stress%20in%20human%20glioma%20cells&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Salazar,%20Mar%C3%ADa&rft.date=2009-05-01&rft.volume=119&rft.issue=5&rft.spage=1359&rft.epage=1372&rft.pages=1359-1372&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/jci37948&rft_dat=%3Cgale_pubme%3EA200185950%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200572774&rft_id=info:pmid/19425170&rft_galeid=A200185950&rfr_iscdi=true