Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells
Autophagy can promote cell survival or cell death, but the molecular basis underlying its dual role in cancer remains obscure. Here we demonstrate that delta(9)-tetrahydrocannabinol (THC), the main active component of marijuana, induces human glioma cell death through stimulation of autophagy. Our d...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 2009-05, Vol.119 (5), p.1359-1372 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1372 |
---|---|
container_issue | 5 |
container_start_page | 1359 |
container_title | The Journal of clinical investigation |
container_volume | 119 |
creator | Salazar, María Carracedo, Arkaitz Salanueva, Iñigo J Hernández-Tiedra, Sonia Lorente, Mar Egia, Ainara Vázquez, Patricia Blázquez, Cristina Torres, Sofía García, Stephane Nowak, Jonathan Fimia, Gian María Piacentini, Mauro Cecconi, Francesco Pandolfi, Pier Paolo González-Feria, Luis Iovanna, Juan L Guzmán, Manuel Boya, Patricia Velasco, Guillermo |
description | Autophagy can promote cell survival or cell death, but the molecular basis underlying its dual role in cancer remains obscure. Here we demonstrate that delta(9)-tetrahydrocannabinol (THC), the main active component of marijuana, induces human glioma cell death through stimulation of autophagy. Our data indicate that THC induced ceramide accumulation and eukaryotic translation initiation factor 2alpha (eIF2alpha) phosphorylation and thereby activated an ER stress response that promoted autophagy via tribbles homolog 3-dependent (TRB3-dependent) inhibition of the Akt/mammalian target of rapamycin complex 1 (mTORC1) axis. We also showed that autophagy is upstream of apoptosis in cannabinoid-induced human and mouse cancer cell death and that activation of this pathway was necessary for the antitumor action of cannabinoids in vivo. These findings describe a mechanism by which THC can promote the autophagic death of human and mouse cancer cells and provide evidence that cannabinoid administration may be an effective therapeutic strategy for targeting human cancers. |
doi_str_mv | 10.1172/jci37948 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2673842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A200185950</galeid><sourcerecordid>A200185950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-fb4ef4a9235cd6360ee9fd61edf291bf08ee2e2d36e8ad406c0715b7131db2f83</originalsourceid><addsrcrecordid>eNpVkd1rFDEUxYModlsF_wIJPkhfxuZzPl6EsrRaKQhFn0MmuTOTJTNZJ4nQ_77p7uLH04V7f_dwOAehd5R8orRhVzvjeNOJ9gXaUCnbqmW8fYk2hDBadQ1vz9B5jDtCqBBSvEZntBNM0oZsUNjqZdG9W4KzWJvkwoLdYrOBiHVOYT_p8bGawTqdwGID3mMLOk04TWvI44RjcnP2-vAZBnzzUDYrxFhk8JRnveDRuzDrw298g14N2kd4e5oX6OftzY_t1-r--5e77fV9ZSTnqRp6AYPQHePS2JrXBKAbbE3BDqyj_UBaAAbM8hpabQWpDWmo7BvKqe3Z0PIL9Pmou899cW9gSav2ar-6Wa-PKmin_r8sblJj-K1YXfISrAh8OAms4VeGmNQu5HUpnhUjRDasaUSBPh6hUXtQE2ifphh8fg4jqusC0lZ2khTw8giaNcS4wvDHCSXquUL1bXt3qLCg7_91_hc8dcafACFDmOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200572774</pqid></control><display><type>article</type><title>Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Salazar, María ; Carracedo, Arkaitz ; Salanueva, Iñigo J ; Hernández-Tiedra, Sonia ; Lorente, Mar ; Egia, Ainara ; Vázquez, Patricia ; Blázquez, Cristina ; Torres, Sofía ; García, Stephane ; Nowak, Jonathan ; Fimia, Gian María ; Piacentini, Mauro ; Cecconi, Francesco ; Pandolfi, Pier Paolo ; González-Feria, Luis ; Iovanna, Juan L ; Guzmán, Manuel ; Boya, Patricia ; Velasco, Guillermo</creator><creatorcontrib>Salazar, María ; Carracedo, Arkaitz ; Salanueva, Iñigo J ; Hernández-Tiedra, Sonia ; Lorente, Mar ; Egia, Ainara ; Vázquez, Patricia ; Blázquez, Cristina ; Torres, Sofía ; García, Stephane ; Nowak, Jonathan ; Fimia, Gian María ; Piacentini, Mauro ; Cecconi, Francesco ; Pandolfi, Pier Paolo ; González-Feria, Luis ; Iovanna, Juan L ; Guzmán, Manuel ; Boya, Patricia ; Velasco, Guillermo</creatorcontrib><description>Autophagy can promote cell survival or cell death, but the molecular basis underlying its dual role in cancer remains obscure. Here we demonstrate that delta(9)-tetrahydrocannabinol (THC), the main active component of marijuana, induces human glioma cell death through stimulation of autophagy. Our data indicate that THC induced ceramide accumulation and eukaryotic translation initiation factor 2alpha (eIF2alpha) phosphorylation and thereby activated an ER stress response that promoted autophagy via tribbles homolog 3-dependent (TRB3-dependent) inhibition of the Akt/mammalian target of rapamycin complex 1 (mTORC1) axis. We also showed that autophagy is upstream of apoptosis in cannabinoid-induced human and mouse cancer cell death and that activation of this pathway was necessary for the antitumor action of cannabinoids in vivo. These findings describe a mechanism by which THC can promote the autophagic death of human and mouse cancer cells and provide evidence that cannabinoid administration may be an effective therapeutic strategy for targeting human cancers.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/jci37948</identifier><identifier>PMID: 19425170</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Amino Acid Chloromethyl Ketones - pharmacology ; Animals ; Apoptosis - drug effects ; Apoptosis - physiology ; Autophagy - drug effects ; Autophagy - physiology ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Biomedical research ; Cannabinoids ; Cannabinoids - pharmacology ; Cannabinoids - therapeutic use ; Caspase 3 - metabolism ; Causes of ; Cell Cycle Proteins - metabolism ; Cell death ; Cell Death - drug effects ; Cell Death - physiology ; Cell Line, Transformed ; Cell Line, Tumor ; Control ; Dronabinol - pharmacology ; Dronabinol - therapeutic use ; Endoplasmic Reticulum - drug effects ; Endoplasmic Reticulum - pathology ; Enzyme Inhibitors - pharmacology ; Eukaryotic Initiation Factor-2 - metabolism ; Genetic aspects ; Glioma - drug therapy ; Glioma - metabolism ; Glioma - pathology ; Gliomas ; Health aspects ; Humans ; Mechanistic Target of Rapamycin Complex 1 ; Mice ; Microtubule-Associated Proteins - metabolism ; Models, Biological ; Multiprotein Complexes ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Phagocytosis ; Phosphorylation - drug effects ; Physiological aspects ; Protein-Serine-Threonine Kinases - metabolism ; Proteins ; Proto-Oncogene Proteins c-akt - metabolism ; Repressor Proteins - metabolism ; Ribosomal Protein S6 Kinases - metabolism ; Risk factors ; TOR Serine-Threonine Kinases ; Transcription Factors - metabolism ; Xenograft Model Antitumor Assays</subject><ispartof>The Journal of clinical investigation, 2009-05, Vol.119 (5), p.1359-1372</ispartof><rights>COPYRIGHT 2009 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation May 2009</rights><rights>Copyright © 2009, American Society for Clinical Investigation 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-fb4ef4a9235cd6360ee9fd61edf291bf08ee2e2d36e8ad406c0715b7131db2f83</citedby><cites>FETCH-LOGICAL-c533t-fb4ef4a9235cd6360ee9fd61edf291bf08ee2e2d36e8ad406c0715b7131db2f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673842/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673842/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19425170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salazar, María</creatorcontrib><creatorcontrib>Carracedo, Arkaitz</creatorcontrib><creatorcontrib>Salanueva, Iñigo J</creatorcontrib><creatorcontrib>Hernández-Tiedra, Sonia</creatorcontrib><creatorcontrib>Lorente, Mar</creatorcontrib><creatorcontrib>Egia, Ainara</creatorcontrib><creatorcontrib>Vázquez, Patricia</creatorcontrib><creatorcontrib>Blázquez, Cristina</creatorcontrib><creatorcontrib>Torres, Sofía</creatorcontrib><creatorcontrib>García, Stephane</creatorcontrib><creatorcontrib>Nowak, Jonathan</creatorcontrib><creatorcontrib>Fimia, Gian María</creatorcontrib><creatorcontrib>Piacentini, Mauro</creatorcontrib><creatorcontrib>Cecconi, Francesco</creatorcontrib><creatorcontrib>Pandolfi, Pier Paolo</creatorcontrib><creatorcontrib>González-Feria, Luis</creatorcontrib><creatorcontrib>Iovanna, Juan L</creatorcontrib><creatorcontrib>Guzmán, Manuel</creatorcontrib><creatorcontrib>Boya, Patricia</creatorcontrib><creatorcontrib>Velasco, Guillermo</creatorcontrib><title>Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Autophagy can promote cell survival or cell death, but the molecular basis underlying its dual role in cancer remains obscure. Here we demonstrate that delta(9)-tetrahydrocannabinol (THC), the main active component of marijuana, induces human glioma cell death through stimulation of autophagy. Our data indicate that THC induced ceramide accumulation and eukaryotic translation initiation factor 2alpha (eIF2alpha) phosphorylation and thereby activated an ER stress response that promoted autophagy via tribbles homolog 3-dependent (TRB3-dependent) inhibition of the Akt/mammalian target of rapamycin complex 1 (mTORC1) axis. We also showed that autophagy is upstream of apoptosis in cannabinoid-induced human and mouse cancer cell death and that activation of this pathway was necessary for the antitumor action of cannabinoids in vivo. These findings describe a mechanism by which THC can promote the autophagic death of human and mouse cancer cells and provide evidence that cannabinoid administration may be an effective therapeutic strategy for targeting human cancers.</description><subject>Amino Acid Chloromethyl Ketones - pharmacology</subject><subject>Animals</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - physiology</subject><subject>Autophagy - drug effects</subject><subject>Autophagy - physiology</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Biomedical research</subject><subject>Cannabinoids</subject><subject>Cannabinoids - pharmacology</subject><subject>Cannabinoids - therapeutic use</subject><subject>Caspase 3 - metabolism</subject><subject>Causes of</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell death</subject><subject>Cell Death - drug effects</subject><subject>Cell Death - physiology</subject><subject>Cell Line, Transformed</subject><subject>Cell Line, Tumor</subject><subject>Control</subject><subject>Dronabinol - pharmacology</subject><subject>Dronabinol - therapeutic use</subject><subject>Endoplasmic Reticulum - drug effects</subject><subject>Endoplasmic Reticulum - pathology</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Eukaryotic Initiation Factor-2 - metabolism</subject><subject>Genetic aspects</subject><subject>Glioma - drug therapy</subject><subject>Glioma - metabolism</subject><subject>Glioma - pathology</subject><subject>Gliomas</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Models, Biological</subject><subject>Multiprotein Complexes</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Phagocytosis</subject><subject>Phosphorylation - drug effects</subject><subject>Physiological aspects</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Repressor Proteins - metabolism</subject><subject>Ribosomal Protein S6 Kinases - metabolism</subject><subject>Risk factors</subject><subject>TOR Serine-Threonine Kinases</subject><subject>Transcription Factors - metabolism</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><recordid>eNpVkd1rFDEUxYModlsF_wIJPkhfxuZzPl6EsrRaKQhFn0MmuTOTJTNZJ4nQ_77p7uLH04V7f_dwOAehd5R8orRhVzvjeNOJ9gXaUCnbqmW8fYk2hDBadQ1vz9B5jDtCqBBSvEZntBNM0oZsUNjqZdG9W4KzWJvkwoLdYrOBiHVOYT_p8bGawTqdwGID3mMLOk04TWvI44RjcnP2-vAZBnzzUDYrxFhk8JRnveDRuzDrw298g14N2kd4e5oX6OftzY_t1-r--5e77fV9ZSTnqRp6AYPQHePS2JrXBKAbbE3BDqyj_UBaAAbM8hpabQWpDWmo7BvKqe3Z0PIL9Pmou899cW9gSav2ar-6Wa-PKmin_r8sblJj-K1YXfISrAh8OAms4VeGmNQu5HUpnhUjRDasaUSBPh6hUXtQE2ifphh8fg4jqusC0lZ2khTw8giaNcS4wvDHCSXquUL1bXt3qLCg7_91_hc8dcafACFDmOg</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Salazar, María</creator><creator>Carracedo, Arkaitz</creator><creator>Salanueva, Iñigo J</creator><creator>Hernández-Tiedra, Sonia</creator><creator>Lorente, Mar</creator><creator>Egia, Ainara</creator><creator>Vázquez, Patricia</creator><creator>Blázquez, Cristina</creator><creator>Torres, Sofía</creator><creator>García, Stephane</creator><creator>Nowak, Jonathan</creator><creator>Fimia, Gian María</creator><creator>Piacentini, Mauro</creator><creator>Cecconi, Francesco</creator><creator>Pandolfi, Pier Paolo</creator><creator>González-Feria, Luis</creator><creator>Iovanna, Juan L</creator><creator>Guzmán, Manuel</creator><creator>Boya, Patricia</creator><creator>Velasco, Guillermo</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>5PM</scope></search><sort><creationdate>20090501</creationdate><title>Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells</title><author>Salazar, María ; Carracedo, Arkaitz ; Salanueva, Iñigo J ; Hernández-Tiedra, Sonia ; Lorente, Mar ; Egia, Ainara ; Vázquez, Patricia ; Blázquez, Cristina ; Torres, Sofía ; García, Stephane ; Nowak, Jonathan ; Fimia, Gian María ; Piacentini, Mauro ; Cecconi, Francesco ; Pandolfi, Pier Paolo ; González-Feria, Luis ; Iovanna, Juan L ; Guzmán, Manuel ; Boya, Patricia ; Velasco, Guillermo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-fb4ef4a9235cd6360ee9fd61edf291bf08ee2e2d36e8ad406c0715b7131db2f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Chloromethyl Ketones - pharmacology</topic><topic>Animals</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - physiology</topic><topic>Autophagy - drug effects</topic><topic>Autophagy - physiology</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Biomedical research</topic><topic>Cannabinoids</topic><topic>Cannabinoids - pharmacology</topic><topic>Cannabinoids - therapeutic use</topic><topic>Caspase 3 - metabolism</topic><topic>Causes of</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell death</topic><topic>Cell Death - drug effects</topic><topic>Cell Death - physiology</topic><topic>Cell Line, Transformed</topic><topic>Cell Line, Tumor</topic><topic>Control</topic><topic>Dronabinol - pharmacology</topic><topic>Dronabinol - therapeutic use</topic><topic>Endoplasmic Reticulum - drug effects</topic><topic>Endoplasmic Reticulum - pathology</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Eukaryotic Initiation Factor-2 - metabolism</topic><topic>Genetic aspects</topic><topic>Glioma - drug therapy</topic><topic>Glioma - metabolism</topic><topic>Glioma - pathology</topic><topic>Gliomas</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Models, Biological</topic><topic>Multiprotein Complexes</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Phagocytosis</topic><topic>Phosphorylation - drug effects</topic><topic>Physiological aspects</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Repressor Proteins - metabolism</topic><topic>Ribosomal Protein S6 Kinases - metabolism</topic><topic>Risk factors</topic><topic>TOR Serine-Threonine Kinases</topic><topic>Transcription Factors - metabolism</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salazar, María</creatorcontrib><creatorcontrib>Carracedo, Arkaitz</creatorcontrib><creatorcontrib>Salanueva, Iñigo J</creatorcontrib><creatorcontrib>Hernández-Tiedra, Sonia</creatorcontrib><creatorcontrib>Lorente, Mar</creatorcontrib><creatorcontrib>Egia, Ainara</creatorcontrib><creatorcontrib>Vázquez, Patricia</creatorcontrib><creatorcontrib>Blázquez, Cristina</creatorcontrib><creatorcontrib>Torres, Sofía</creatorcontrib><creatorcontrib>García, Stephane</creatorcontrib><creatorcontrib>Nowak, Jonathan</creatorcontrib><creatorcontrib>Fimia, Gian María</creatorcontrib><creatorcontrib>Piacentini, Mauro</creatorcontrib><creatorcontrib>Cecconi, Francesco</creatorcontrib><creatorcontrib>Pandolfi, Pier Paolo</creatorcontrib><creatorcontrib>González-Feria, Luis</creatorcontrib><creatorcontrib>Iovanna, Juan L</creatorcontrib><creatorcontrib>Guzmán, Manuel</creatorcontrib><creatorcontrib>Boya, Patricia</creatorcontrib><creatorcontrib>Velasco, Guillermo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salazar, María</au><au>Carracedo, Arkaitz</au><au>Salanueva, Iñigo J</au><au>Hernández-Tiedra, Sonia</au><au>Lorente, Mar</au><au>Egia, Ainara</au><au>Vázquez, Patricia</au><au>Blázquez, Cristina</au><au>Torres, Sofía</au><au>García, Stephane</au><au>Nowak, Jonathan</au><au>Fimia, Gian María</au><au>Piacentini, Mauro</au><au>Cecconi, Francesco</au><au>Pandolfi, Pier Paolo</au><au>González-Feria, Luis</au><au>Iovanna, Juan L</au><au>Guzmán, Manuel</au><au>Boya, Patricia</au><au>Velasco, Guillermo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2009-05-01</date><risdate>2009</risdate><volume>119</volume><issue>5</issue><spage>1359</spage><epage>1372</epage><pages>1359-1372</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Autophagy can promote cell survival or cell death, but the molecular basis underlying its dual role in cancer remains obscure. Here we demonstrate that delta(9)-tetrahydrocannabinol (THC), the main active component of marijuana, induces human glioma cell death through stimulation of autophagy. Our data indicate that THC induced ceramide accumulation and eukaryotic translation initiation factor 2alpha (eIF2alpha) phosphorylation and thereby activated an ER stress response that promoted autophagy via tribbles homolog 3-dependent (TRB3-dependent) inhibition of the Akt/mammalian target of rapamycin complex 1 (mTORC1) axis. We also showed that autophagy is upstream of apoptosis in cannabinoid-induced human and mouse cancer cell death and that activation of this pathway was necessary for the antitumor action of cannabinoids in vivo. These findings describe a mechanism by which THC can promote the autophagic death of human and mouse cancer cells and provide evidence that cannabinoid administration may be an effective therapeutic strategy for targeting human cancers.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>19425170</pmid><doi>10.1172/jci37948</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9738 |
ispartof | The Journal of clinical investigation, 2009-05, Vol.119 (5), p.1359-1372 |
issn | 0021-9738 1558-8238 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2673842 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Amino Acid Chloromethyl Ketones - pharmacology Animals Apoptosis - drug effects Apoptosis - physiology Autophagy - drug effects Autophagy - physiology Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism Biomedical research Cannabinoids Cannabinoids - pharmacology Cannabinoids - therapeutic use Caspase 3 - metabolism Causes of Cell Cycle Proteins - metabolism Cell death Cell Death - drug effects Cell Death - physiology Cell Line, Transformed Cell Line, Tumor Control Dronabinol - pharmacology Dronabinol - therapeutic use Endoplasmic Reticulum - drug effects Endoplasmic Reticulum - pathology Enzyme Inhibitors - pharmacology Eukaryotic Initiation Factor-2 - metabolism Genetic aspects Glioma - drug therapy Glioma - metabolism Glioma - pathology Gliomas Health aspects Humans Mechanistic Target of Rapamycin Complex 1 Mice Microtubule-Associated Proteins - metabolism Models, Biological Multiprotein Complexes Neoplasm Proteins - genetics Neoplasm Proteins - metabolism Phagocytosis Phosphorylation - drug effects Physiological aspects Protein-Serine-Threonine Kinases - metabolism Proteins Proto-Oncogene Proteins c-akt - metabolism Repressor Proteins - metabolism Ribosomal Protein S6 Kinases - metabolism Risk factors TOR Serine-Threonine Kinases Transcription Factors - metabolism Xenograft Model Antitumor Assays |
title | Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T04%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cannabinoid%20action%20induces%20autophagy-mediated%20cell%20death%20through%20stimulation%20of%20ER%20stress%20in%20human%20glioma%20cells&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Salazar,%20Mar%C3%ADa&rft.date=2009-05-01&rft.volume=119&rft.issue=5&rft.spage=1359&rft.epage=1372&rft.pages=1359-1372&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/jci37948&rft_dat=%3Cgale_pubme%3EA200185950%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200572774&rft_id=info:pmid/19425170&rft_galeid=A200185950&rfr_iscdi=true |