Targeting individual subunits of the FokI restriction endonuclease to specific DNA strands
Many restriction endonucleases are dimers that act symmetrically at palindromic DNA sequences, with each active site cutting one strand. In contrast, FokI acts asymmetrically at a non-palindromic sequence, cutting 'top' and 'bottom' strands 9 and 13 nucleotides downstream of the...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2009-04, Vol.37 (7), p.2105-2115 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2115 |
---|---|
container_issue | 7 |
container_start_page | 2105 |
container_title | Nucleic acids research |
container_volume | 37 |
creator | Sanders, Kelly L Catto, Lucy E Bellamy, Stuart R.W Halford, Stephen E |
description | Many restriction endonucleases are dimers that act symmetrically at palindromic DNA sequences, with each active site cutting one strand. In contrast, FokI acts asymmetrically at a non-palindromic sequence, cutting 'top' and 'bottom' strands 9 and 13 nucleotides downstream of the site. FokI is a monomeric protein with one active site and a single monomer covers the entire recognition sequence. To cut both strands, the monomer at the site recruits a second monomer from solution, but it is not yet known which DNA strand is cut by the monomer bound to the site and which by the recruited monomer. In this work, mutants of FokI were used to show that the monomer bound to the site made the distal cut in the bottom strand, whilst the recruited monomer made in parallel the proximal cut in the top strand. Procedures were also established to direct FokI activity, either preferentially to the bottom strand or exclusively to the top strand. The latter extends the range of enzymes for nicking specified strands at specific sequences, and may facilitate further applications of FokI in gene targeting. |
doi_str_mv | 10.1093/nar/gkp046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2673415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkp046</oup_id><sourcerecordid>20592152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-db74c7ee42dc5cc03ab0355a0be5d42cc17059ae6a92e4c24d93d7ef2e7441ee3</originalsourceid><addsrcrecordid>eNqF0U1rFTEUBuAgir2tbvwBGgRdCGPzOelshNJ620JRxBZLNyGTnJmmd25yTWaK_nsjc6kfC11lkYc3OedF6Bklbylp-H4wab9fbYioH6AF5TWrRFOzh2hBOJEVJeJgB-3mfEsIFVSKx2iHNoxxzvgCXV-Y1MPoQ499cP7Ou8kMOE_tFPyYcezweAN4GVdnOEEek7ejjwFDcDFMdgCTAY8R5w1Y33mLjz8c4sJMcPkJetSZIcPT7bmHLpfvL45Oq_OPJ2dHh-eVlaweK9cqYRWAYM5Kawk3LeFSGtKCdIJZSxWRjYHaNAyEZcI13CnoGCghKADfQ-_m3M3UrsFZCOX9QW-SX5v0XUfj9Z83wd_oPt5pViteFlICXm8DUvw6lSn12mcLw2ACxCnrWlElyAH_L2Tlo4xKVuDLv-BtnFIoWyiG1GX3jSrozYxsijkn6O6_TIn-Wawuxeq52IKf_z7kL7ptsoBXM4jT5t9B1ex8HuHbvTRpVebkSurTq2tNqFxesU8n-kvxL2bfmahNn3zWl58ZoZzQmklZ1vIDhGbGAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200623397</pqid></control><display><type>article</type><title>Targeting individual subunits of the FokI restriction endonuclease to specific DNA strands</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sanders, Kelly L ; Catto, Lucy E ; Bellamy, Stuart R.W ; Halford, Stephen E</creator><creatorcontrib>Sanders, Kelly L ; Catto, Lucy E ; Bellamy, Stuart R.W ; Halford, Stephen E</creatorcontrib><description>Many restriction endonucleases are dimers that act symmetrically at palindromic DNA sequences, with each active site cutting one strand. In contrast, FokI acts asymmetrically at a non-palindromic sequence, cutting 'top' and 'bottom' strands 9 and 13 nucleotides downstream of the site. FokI is a monomeric protein with one active site and a single monomer covers the entire recognition sequence. To cut both strands, the monomer at the site recruits a second monomer from solution, but it is not yet known which DNA strand is cut by the monomer bound to the site and which by the recruited monomer. In this work, mutants of FokI were used to show that the monomer bound to the site made the distal cut in the bottom strand, whilst the recruited monomer made in parallel the proximal cut in the top strand. Procedures were also established to direct FokI activity, either preferentially to the bottom strand or exclusively to the top strand. The latter extends the range of enzymes for nicking specified strands at specific sequences, and may facilitate further applications of FokI in gene targeting.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkp046</identifier><identifier>PMID: 19223323</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Deoxyribonucleases, Type II Site-Specific - genetics ; Deoxyribonucleases, Type II Site-Specific - metabolism ; DNA - chemistry ; DNA - metabolism ; Gene Targeting ; Kinetics ; Nucleic Acid Enzymes ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Substrate Specificity</subject><ispartof>Nucleic acids research, 2009-04, Vol.37 (7), p.2105-2115</ispartof><rights>2009 The Author(s) 2009</rights><rights>2009 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-db74c7ee42dc5cc03ab0355a0be5d42cc17059ae6a92e4c24d93d7ef2e7441ee3</citedby><cites>FETCH-LOGICAL-c526t-db74c7ee42dc5cc03ab0355a0be5d42cc17059ae6a92e4c24d93d7ef2e7441ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673415/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673415/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19223323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanders, Kelly L</creatorcontrib><creatorcontrib>Catto, Lucy E</creatorcontrib><creatorcontrib>Bellamy, Stuart R.W</creatorcontrib><creatorcontrib>Halford, Stephen E</creatorcontrib><title>Targeting individual subunits of the FokI restriction endonuclease to specific DNA strands</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Many restriction endonucleases are dimers that act symmetrically at palindromic DNA sequences, with each active site cutting one strand. In contrast, FokI acts asymmetrically at a non-palindromic sequence, cutting 'top' and 'bottom' strands 9 and 13 nucleotides downstream of the site. FokI is a monomeric protein with one active site and a single monomer covers the entire recognition sequence. To cut both strands, the monomer at the site recruits a second monomer from solution, but it is not yet known which DNA strand is cut by the monomer bound to the site and which by the recruited monomer. In this work, mutants of FokI were used to show that the monomer bound to the site made the distal cut in the bottom strand, whilst the recruited monomer made in parallel the proximal cut in the top strand. Procedures were also established to direct FokI activity, either preferentially to the bottom strand or exclusively to the top strand. The latter extends the range of enzymes for nicking specified strands at specific sequences, and may facilitate further applications of FokI in gene targeting.</description><subject>Deoxyribonucleases, Type II Site-Specific - genetics</subject><subject>Deoxyribonucleases, Type II Site-Specific - metabolism</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>Gene Targeting</subject><subject>Kinetics</subject><subject>Nucleic Acid Enzymes</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Substrate Specificity</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqF0U1rFTEUBuAgir2tbvwBGgRdCGPzOelshNJ620JRxBZLNyGTnJmmd25yTWaK_nsjc6kfC11lkYc3OedF6Bklbylp-H4wab9fbYioH6AF5TWrRFOzh2hBOJEVJeJgB-3mfEsIFVSKx2iHNoxxzvgCXV-Y1MPoQ499cP7Ou8kMOE_tFPyYcezweAN4GVdnOEEek7ejjwFDcDFMdgCTAY8R5w1Y33mLjz8c4sJMcPkJetSZIcPT7bmHLpfvL45Oq_OPJ2dHh-eVlaweK9cqYRWAYM5Kawk3LeFSGtKCdIJZSxWRjYHaNAyEZcI13CnoGCghKADfQ-_m3M3UrsFZCOX9QW-SX5v0XUfj9Z83wd_oPt5pViteFlICXm8DUvw6lSn12mcLw2ACxCnrWlElyAH_L2Tlo4xKVuDLv-BtnFIoWyiG1GX3jSrozYxsijkn6O6_TIn-Wawuxeq52IKf_z7kL7ptsoBXM4jT5t9B1ex8HuHbvTRpVebkSurTq2tNqFxesU8n-kvxL2bfmahNn3zWl58ZoZzQmklZ1vIDhGbGAA</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Sanders, Kelly L</creator><creator>Catto, Lucy E</creator><creator>Bellamy, Stuart R.W</creator><creator>Halford, Stephen E</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090401</creationdate><title>Targeting individual subunits of the FokI restriction endonuclease to specific DNA strands</title><author>Sanders, Kelly L ; Catto, Lucy E ; Bellamy, Stuart R.W ; Halford, Stephen E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-db74c7ee42dc5cc03ab0355a0be5d42cc17059ae6a92e4c24d93d7ef2e7441ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Deoxyribonucleases, Type II Site-Specific - genetics</topic><topic>Deoxyribonucleases, Type II Site-Specific - metabolism</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>Gene Targeting</topic><topic>Kinetics</topic><topic>Nucleic Acid Enzymes</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanders, Kelly L</creatorcontrib><creatorcontrib>Catto, Lucy E</creatorcontrib><creatorcontrib>Bellamy, Stuart R.W</creatorcontrib><creatorcontrib>Halford, Stephen E</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanders, Kelly L</au><au>Catto, Lucy E</au><au>Bellamy, Stuart R.W</au><au>Halford, Stephen E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting individual subunits of the FokI restriction endonuclease to specific DNA strands</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>37</volume><issue>7</issue><spage>2105</spage><epage>2115</epage><pages>2105-2115</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Many restriction endonucleases are dimers that act symmetrically at palindromic DNA sequences, with each active site cutting one strand. In contrast, FokI acts asymmetrically at a non-palindromic sequence, cutting 'top' and 'bottom' strands 9 and 13 nucleotides downstream of the site. FokI is a monomeric protein with one active site and a single monomer covers the entire recognition sequence. To cut both strands, the monomer at the site recruits a second monomer from solution, but it is not yet known which DNA strand is cut by the monomer bound to the site and which by the recruited monomer. In this work, mutants of FokI were used to show that the monomer bound to the site made the distal cut in the bottom strand, whilst the recruited monomer made in parallel the proximal cut in the top strand. Procedures were also established to direct FokI activity, either preferentially to the bottom strand or exclusively to the top strand. The latter extends the range of enzymes for nicking specified strands at specific sequences, and may facilitate further applications of FokI in gene targeting.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>19223323</pmid><doi>10.1093/nar/gkp046</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2009-04, Vol.37 (7), p.2105-2115 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2673415 |
source | Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Deoxyribonucleases, Type II Site-Specific - genetics Deoxyribonucleases, Type II Site-Specific - metabolism DNA - chemistry DNA - metabolism Gene Targeting Kinetics Nucleic Acid Enzymes Protein Subunits - genetics Protein Subunits - metabolism Substrate Specificity |
title | Targeting individual subunits of the FokI restriction endonuclease to specific DNA strands |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20individual%20subunits%20of%20the%20FokI%20restriction%20endonuclease%20to%20specific%20DNA%20strands&rft.jtitle=Nucleic%20acids%20research&rft.au=Sanders,%20Kelly%20L&rft.date=2009-04-01&rft.volume=37&rft.issue=7&rft.spage=2105&rft.epage=2115&rft.pages=2105-2115&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkp046&rft_dat=%3Cproquest_pubme%3E20592152%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200623397&rft_id=info:pmid/19223323&rft_oup_id=10.1093/nar/gkp046&rfr_iscdi=true |