The empirical valence bond as an effective strategy for computer-aided enzyme design

The ability of the empirical valence bond (EVB) to be used in screening active site residues in enzyme design is explored in a preliminary way. This validation is done by comparing the ability of this approach to evaluate the catalytic contributions of various residues in chorismate mutase. It is de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology journal 2009-04, Vol.4 (4), p.495-500
Hauptverfasser: Vardi-Kilshtain, Alexandra, Roca, Maite, Warshel, Arieh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 500
container_issue 4
container_start_page 495
container_title Biotechnology journal
container_volume 4
creator Vardi-Kilshtain, Alexandra
Roca, Maite
Warshel, Arieh
description The ability of the empirical valence bond (EVB) to be used in screening active site residues in enzyme design is explored in a preliminary way. This validation is done by comparing the ability of this approach to evaluate the catalytic contributions of various residues in chorismate mutase. It is demonstrated that the EVB model can serve as an accurate tool in the final stages of computer‐aided enzyme design (CAED). The ability of the model to predict quantitatively the catalytic power of enzymes should augment the capacity of current approaches for enzyme design.
doi_str_mv 10.1002/biot.200800299
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2671572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20559818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4229-96d4480be3dd5b958e94a0b00a47faaa304e3ca639f5997786211bb02b8311063</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhS1ERR-wZYm8YjfBr_FjgwRRaStVLYugsrNsz53UMDMO9iQ0_HqmShTaFSvbuud898gHobeUzCgh7IOPaZwxQvT0MOYFOqFakkpxKl7u71JJfYxOS_lBiKg5Ea_QMTWMGa3lCVos7gFDv4o5BtfhjetgCIB9GhrsCnYDhraFMMYN4DJmN8Jyi9uUcUj9aj1CrlxsoMEw_Nn2gBsocTm8Rket6wq82Z9n6NuX88X8srq-vbiaf7qugpj2V0Y2QmjigTdN7U2twQhHPCFOqNY5N2UFHpzkpq2NUUpLRqn3hHnNKSWSn6GPO-5q7XtoAgxTws6ucuxd3trkon0-GeK9XaaNZVLRWrEJ8H4PyOnXGspo-1gCdJ0bIK2LZaSujaZ6Es52wpBTKRnawxJK7GMR9rEIeyhiMrx7Gu2ffP_zk8DsBL9jB9v_4Oznq9vFU3i188YywsPB6_JPKxVXtb27ubDzG_Hd3F1-tXP-F2whpcE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20559818</pqid></control><display><type>article</type><title>The empirical valence bond as an effective strategy for computer-aided enzyme design</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vardi-Kilshtain, Alexandra ; Roca, Maite ; Warshel, Arieh</creator><creatorcontrib>Vardi-Kilshtain, Alexandra ; Roca, Maite ; Warshel, Arieh</creatorcontrib><description>The ability of the empirical valence bond (EVB) to be used in screening active site residues in enzyme design is explored in a preliminary way. This validation is done by comparing the ability of this approach to evaluate the catalytic contributions of various residues in chorismate mutase. It is demonstrated that the EVB model can serve as an accurate tool in the final stages of computer‐aided enzyme design (CAED). The ability of the model to predict quantitatively the catalytic power of enzymes should augment the capacity of current approaches for enzyme design.</description><identifier>ISSN: 1860-6768</identifier><identifier>EISSN: 1860-7314</identifier><identifier>DOI: 10.1002/biot.200800299</identifier><identifier>PMID: 19229886</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Amino Acid Substitution ; Arginine - metabolism ; Binding Sites ; Catalysis ; Chorismate Mutase - chemistry ; Chorismate Mutase - genetics ; Chorismate Mutase - metabolism ; Computer Simulation ; Computer-Aided Design ; Dimerization ; Enzyme Activation ; Enzyme design ; Enzymes - chemistry ; Enzymes - genetics ; Kinetics ; Models, Chemical ; Models, Molecular ; Pre-organization effect ; Static Electricity ; Structure-Activity Relationship ; Thermodynamics ; Transition-state stabilization ; Valine - metabolism ; Water - chemistry</subject><ispartof>Biotechnology journal, 2009-04, Vol.4 (4), p.495-500</ispartof><rights>Copyright © 2009 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4229-96d4480be3dd5b958e94a0b00a47faaa304e3ca639f5997786211bb02b8311063</citedby><cites>FETCH-LOGICAL-c4229-96d4480be3dd5b958e94a0b00a47faaa304e3ca639f5997786211bb02b8311063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbiot.200800299$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbiot.200800299$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19229886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vardi-Kilshtain, Alexandra</creatorcontrib><creatorcontrib>Roca, Maite</creatorcontrib><creatorcontrib>Warshel, Arieh</creatorcontrib><title>The empirical valence bond as an effective strategy for computer-aided enzyme design</title><title>Biotechnology journal</title><addtitle>Biotechnology Journal</addtitle><description>The ability of the empirical valence bond (EVB) to be used in screening active site residues in enzyme design is explored in a preliminary way. This validation is done by comparing the ability of this approach to evaluate the catalytic contributions of various residues in chorismate mutase. It is demonstrated that the EVB model can serve as an accurate tool in the final stages of computer‐aided enzyme design (CAED). The ability of the model to predict quantitatively the catalytic power of enzymes should augment the capacity of current approaches for enzyme design.</description><subject>Amino Acid Substitution</subject><subject>Arginine - metabolism</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>Chorismate Mutase - chemistry</subject><subject>Chorismate Mutase - genetics</subject><subject>Chorismate Mutase - metabolism</subject><subject>Computer Simulation</subject><subject>Computer-Aided Design</subject><subject>Dimerization</subject><subject>Enzyme Activation</subject><subject>Enzyme design</subject><subject>Enzymes - chemistry</subject><subject>Enzymes - genetics</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Pre-organization effect</subject><subject>Static Electricity</subject><subject>Structure-Activity Relationship</subject><subject>Thermodynamics</subject><subject>Transition-state stabilization</subject><subject>Valine - metabolism</subject><subject>Water - chemistry</subject><issn>1860-6768</issn><issn>1860-7314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtvEzEUhS1ERR-wZYm8YjfBr_FjgwRRaStVLYugsrNsz53UMDMO9iQ0_HqmShTaFSvbuud898gHobeUzCgh7IOPaZwxQvT0MOYFOqFakkpxKl7u71JJfYxOS_lBiKg5Ea_QMTWMGa3lCVos7gFDv4o5BtfhjetgCIB9GhrsCnYDhraFMMYN4DJmN8Jyi9uUcUj9aj1CrlxsoMEw_Nn2gBsocTm8Rket6wq82Z9n6NuX88X8srq-vbiaf7qugpj2V0Y2QmjigTdN7U2twQhHPCFOqNY5N2UFHpzkpq2NUUpLRqn3hHnNKSWSn6GPO-5q7XtoAgxTws6ucuxd3trkon0-GeK9XaaNZVLRWrEJ8H4PyOnXGspo-1gCdJ0bIK2LZaSujaZ6Es52wpBTKRnawxJK7GMR9rEIeyhiMrx7Gu2ffP_zk8DsBL9jB9v_4Oznq9vFU3i188YywsPB6_JPKxVXtb27ubDzG_Hd3F1-tXP-F2whpcE</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>Vardi-Kilshtain, Alexandra</creator><creator>Roca, Maite</creator><creator>Warshel, Arieh</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>200904</creationdate><title>The empirical valence bond as an effective strategy for computer-aided enzyme design</title><author>Vardi-Kilshtain, Alexandra ; Roca, Maite ; Warshel, Arieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4229-96d4480be3dd5b958e94a0b00a47faaa304e3ca639f5997786211bb02b8311063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Substitution</topic><topic>Arginine - metabolism</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>Chorismate Mutase - chemistry</topic><topic>Chorismate Mutase - genetics</topic><topic>Chorismate Mutase - metabolism</topic><topic>Computer Simulation</topic><topic>Computer-Aided Design</topic><topic>Dimerization</topic><topic>Enzyme Activation</topic><topic>Enzyme design</topic><topic>Enzymes - chemistry</topic><topic>Enzymes - genetics</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Pre-organization effect</topic><topic>Static Electricity</topic><topic>Structure-Activity Relationship</topic><topic>Thermodynamics</topic><topic>Transition-state stabilization</topic><topic>Valine - metabolism</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vardi-Kilshtain, Alexandra</creatorcontrib><creatorcontrib>Roca, Maite</creatorcontrib><creatorcontrib>Warshel, Arieh</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vardi-Kilshtain, Alexandra</au><au>Roca, Maite</au><au>Warshel, Arieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The empirical valence bond as an effective strategy for computer-aided enzyme design</atitle><jtitle>Biotechnology journal</jtitle><addtitle>Biotechnology Journal</addtitle><date>2009-04</date><risdate>2009</risdate><volume>4</volume><issue>4</issue><spage>495</spage><epage>500</epage><pages>495-500</pages><issn>1860-6768</issn><eissn>1860-7314</eissn><abstract>The ability of the empirical valence bond (EVB) to be used in screening active site residues in enzyme design is explored in a preliminary way. This validation is done by comparing the ability of this approach to evaluate the catalytic contributions of various residues in chorismate mutase. It is demonstrated that the EVB model can serve as an accurate tool in the final stages of computer‐aided enzyme design (CAED). The ability of the model to predict quantitatively the catalytic power of enzymes should augment the capacity of current approaches for enzyme design.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>19229886</pmid><doi>10.1002/biot.200800299</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1860-6768
ispartof Biotechnology journal, 2009-04, Vol.4 (4), p.495-500
issn 1860-6768
1860-7314
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2671572
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Amino Acid Substitution
Arginine - metabolism
Binding Sites
Catalysis
Chorismate Mutase - chemistry
Chorismate Mutase - genetics
Chorismate Mutase - metabolism
Computer Simulation
Computer-Aided Design
Dimerization
Enzyme Activation
Enzyme design
Enzymes - chemistry
Enzymes - genetics
Kinetics
Models, Chemical
Models, Molecular
Pre-organization effect
Static Electricity
Structure-Activity Relationship
Thermodynamics
Transition-state stabilization
Valine - metabolism
Water - chemistry
title The empirical valence bond as an effective strategy for computer-aided enzyme design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20empirical%20valence%20bond%20as%20an%20effective%20strategy%20for%20computer-aided%20enzyme%20design&rft.jtitle=Biotechnology%20journal&rft.au=Vardi-Kilshtain,%20Alexandra&rft.date=2009-04&rft.volume=4&rft.issue=4&rft.spage=495&rft.epage=500&rft.pages=495-500&rft.issn=1860-6768&rft.eissn=1860-7314&rft_id=info:doi/10.1002/biot.200800299&rft_dat=%3Cproquest_pubme%3E20559818%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20559818&rft_id=info:pmid/19229886&rfr_iscdi=true