Redox-switch modulation of human SSADH by dynamic catalytic loop
Succinic semialdehyde dehydrogenase (SSADH) is involved in the final degradation step of the inhibitory neurotransmitter γ‐aminobutyric acid by converting succinic semialdehyde to succinic acid in the mitochondrial matrix. SSADH deficiency, a rare autosomal recessive disease, exhibits variable clini...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2009-04, Vol.28 (7), p.959-968 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 968 |
---|---|
container_issue | 7 |
container_start_page | 959 |
container_title | The EMBO journal |
container_volume | 28 |
creator | Kim, Yeon-Gil Lee, Sujin Kwon, Oh-Sin Park, So-Young Lee, Su-Jin Park, Bum-Joon Kim, Kyung-Jin |
description | Succinic semialdehyde dehydrogenase (SSADH) is involved in the final degradation step of the inhibitory neurotransmitter γ‐aminobutyric acid by converting succinic semialdehyde to succinic acid in the mitochondrial matrix. SSADH deficiency, a rare autosomal recessive disease, exhibits variable clinical phenotypes, including psychomotor retardation, language delay, behaviour disturbance and convulsions. Here, we present crystal structures of both the oxidized and reduced forms of human SSADH. Interestingly, the structures show that the catalytic loop of the enzyme undergoes large structural changes depending on the redox status of the environment, which is mediated by a reversible disulphide bond formation between a catalytic Cys340 and an adjacent Cys342 residues located on the loop. Subsequent
in vivo
and
in vitro
studies reveal that the ‘dynamic catalytic loop’ confers a response to reactive oxygen species and changes in redox status, indicating that the redox‐switch modulation could be a physiological control mechanism of human SSADH. Structural basis for the substrate specificity of the enzyme and the impact of known missense point mutations associated with the disease pathogenesis are presented as well. |
doi_str_mv | 10.1038/emboj.2009.40 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2670868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1675360501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5350-fa876946a576e672e7bc2be9731eccfee7992586ea337ef8421711b93c1252a13</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokNhyRZFLNhluLbj1wZR-gS1IDFApW4sx3PTyTSJhzhpm39PpjMqBQlWvpK_c3yuDyEvKUwpcP0W6zwspwzATDN4RCY0k5AyUOIxmQCTNM2oNjvkWYxLABBa0adkhxoOkGUwIe-_4jzcpvGm7PwiqcO8r1xXhiYJRbLoa9cks9newUmSD8l8aFxd-sS7zlVDN05VCKvn5Enhqogvtucu-X50-G3_JD39cvxxf-809YILSAunlTSZdEJJlIqhyj3L0ShO0fsCURnDhJboOFdY6IxRRWluuKdMMEf5Lnm38V31eY1zj03Xusqu2rJ27WCDK-2fN025sJfh2jKpQEs9GrzZGrThZ4-xs3UZPVaVazD00UpFwXCtRvD1X-Ay9G0zLmepEUwYkbERSjeQb0OMLRb3SSjYdTH2rhi7LsZmMPKvHsb_TW-bGAGxAW7KCof_u9nDsw-f1vOdbrrRxVHSXGL7IO0_kmyTl7HD2_uHXHs1fgFXwp5_PrbnZxc_LvTBzHL-C9mxuLI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195259542</pqid></control><display><type>article</type><title>Redox-switch modulation of human SSADH by dynamic catalytic loop</title><source>Springer Nature OA Free Journals</source><creator>Kim, Yeon-Gil ; Lee, Sujin ; Kwon, Oh-Sin ; Park, So-Young ; Lee, Su-Jin ; Park, Bum-Joon ; Kim, Kyung-Jin</creator><creatorcontrib>Kim, Yeon-Gil ; Lee, Sujin ; Kwon, Oh-Sin ; Park, So-Young ; Lee, Su-Jin ; Park, Bum-Joon ; Kim, Kyung-Jin</creatorcontrib><description>Succinic semialdehyde dehydrogenase (SSADH) is involved in the final degradation step of the inhibitory neurotransmitter γ‐aminobutyric acid by converting succinic semialdehyde to succinic acid in the mitochondrial matrix. SSADH deficiency, a rare autosomal recessive disease, exhibits variable clinical phenotypes, including psychomotor retardation, language delay, behaviour disturbance and convulsions. Here, we present crystal structures of both the oxidized and reduced forms of human SSADH. Interestingly, the structures show that the catalytic loop of the enzyme undergoes large structural changes depending on the redox status of the environment, which is mediated by a reversible disulphide bond formation between a catalytic Cys340 and an adjacent Cys342 residues located on the loop. Subsequent
in vivo
and
in vitro
studies reveal that the ‘dynamic catalytic loop’ confers a response to reactive oxygen species and changes in redox status, indicating that the redox‐switch modulation could be a physiological control mechanism of human SSADH. Structural basis for the substrate specificity of the enzyme and the impact of known missense point mutations associated with the disease pathogenesis are presented as well.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/emboj.2009.40</identifier><identifier>PMID: 19300440</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Amino Acid Sequence ; Binding Sites ; Catalysis ; Catalytic Domain ; Cloning, Molecular ; Crystallography, X-Ray ; Dehydrogenase ; EMBO27 ; EMBO40 ; GABA ; Genotype & phenotype ; Humans ; Models, Molecular ; Molecular biology ; Molecular Sequence Data ; Mutation ; NAD - metabolism ; Neurotransmitters ; Oxidation-Reduction ; Physiology ; Protein Conformation ; redox switch ; ROS ; Sequence Alignment ; SSADH ; SSADH deficiency ; Substrate Specificity ; Succinate-Semialdehyde Dehydrogenase - chemistry ; Succinate-Semialdehyde Dehydrogenase - genetics ; Succinate-Semialdehyde Dehydrogenase - metabolism</subject><ispartof>The EMBO journal, 2009-04, Vol.28 (7), p.959-968</ispartof><rights>European Molecular Biology Organization 2009</rights><rights>Copyright © 2009 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Apr 8, 2009</rights><rights>Copyright © 2009, European Molecular Biology Organization 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5350-fa876946a576e672e7bc2be9731eccfee7992586ea337ef8421711b93c1252a13</citedby><cites>FETCH-LOGICAL-c5350-fa876946a576e672e7bc2be9731eccfee7992586ea337ef8421711b93c1252a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670868/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670868/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/emboj.2009.40$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19300440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yeon-Gil</creatorcontrib><creatorcontrib>Lee, Sujin</creatorcontrib><creatorcontrib>Kwon, Oh-Sin</creatorcontrib><creatorcontrib>Park, So-Young</creatorcontrib><creatorcontrib>Lee, Su-Jin</creatorcontrib><creatorcontrib>Park, Bum-Joon</creatorcontrib><creatorcontrib>Kim, Kyung-Jin</creatorcontrib><title>Redox-switch modulation of human SSADH by dynamic catalytic loop</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Succinic semialdehyde dehydrogenase (SSADH) is involved in the final degradation step of the inhibitory neurotransmitter γ‐aminobutyric acid by converting succinic semialdehyde to succinic acid in the mitochondrial matrix. SSADH deficiency, a rare autosomal recessive disease, exhibits variable clinical phenotypes, including psychomotor retardation, language delay, behaviour disturbance and convulsions. Here, we present crystal structures of both the oxidized and reduced forms of human SSADH. Interestingly, the structures show that the catalytic loop of the enzyme undergoes large structural changes depending on the redox status of the environment, which is mediated by a reversible disulphide bond formation between a catalytic Cys340 and an adjacent Cys342 residues located on the loop. Subsequent
in vivo
and
in vitro
studies reveal that the ‘dynamic catalytic loop’ confers a response to reactive oxygen species and changes in redox status, indicating that the redox‐switch modulation could be a physiological control mechanism of human SSADH. Structural basis for the substrate specificity of the enzyme and the impact of known missense point mutations associated with the disease pathogenesis are presented as well.</description><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Cloning, Molecular</subject><subject>Crystallography, X-Ray</subject><subject>Dehydrogenase</subject><subject>EMBO27</subject><subject>EMBO40</subject><subject>GABA</subject><subject>Genotype & phenotype</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>NAD - metabolism</subject><subject>Neurotransmitters</subject><subject>Oxidation-Reduction</subject><subject>Physiology</subject><subject>Protein Conformation</subject><subject>redox switch</subject><subject>ROS</subject><subject>Sequence Alignment</subject><subject>SSADH</subject><subject>SSADH deficiency</subject><subject>Substrate Specificity</subject><subject>Succinate-Semialdehyde Dehydrogenase - chemistry</subject><subject>Succinate-Semialdehyde Dehydrogenase - genetics</subject><subject>Succinate-Semialdehyde Dehydrogenase - metabolism</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtv1DAUhS0EokNhyRZFLNhluLbj1wZR-gS1IDFApW4sx3PTyTSJhzhpm39PpjMqBQlWvpK_c3yuDyEvKUwpcP0W6zwspwzATDN4RCY0k5AyUOIxmQCTNM2oNjvkWYxLABBa0adkhxoOkGUwIe-_4jzcpvGm7PwiqcO8r1xXhiYJRbLoa9cks9newUmSD8l8aFxd-sS7zlVDN05VCKvn5Enhqogvtucu-X50-G3_JD39cvxxf-809YILSAunlTSZdEJJlIqhyj3L0ShO0fsCURnDhJboOFdY6IxRRWluuKdMMEf5Lnm38V31eY1zj03Xusqu2rJ27WCDK-2fN025sJfh2jKpQEs9GrzZGrThZ4-xs3UZPVaVazD00UpFwXCtRvD1X-Ay9G0zLmepEUwYkbERSjeQb0OMLRb3SSjYdTH2rhi7LsZmMPKvHsb_TW-bGAGxAW7KCof_u9nDsw-f1vOdbrrRxVHSXGL7IO0_kmyTl7HD2_uHXHs1fgFXwp5_PrbnZxc_LvTBzHL-C9mxuLI</recordid><startdate>20090408</startdate><enddate>20090408</enddate><creator>Kim, Yeon-Gil</creator><creator>Lee, Sujin</creator><creator>Kwon, Oh-Sin</creator><creator>Park, So-Young</creator><creator>Lee, Su-Jin</creator><creator>Park, Bum-Joon</creator><creator>Kim, Kyung-Jin</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090408</creationdate><title>Redox-switch modulation of human SSADH by dynamic catalytic loop</title><author>Kim, Yeon-Gil ; Lee, Sujin ; Kwon, Oh-Sin ; Park, So-Young ; Lee, Su-Jin ; Park, Bum-Joon ; Kim, Kyung-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5350-fa876946a576e672e7bc2be9731eccfee7992586ea337ef8421711b93c1252a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Cloning, Molecular</topic><topic>Crystallography, X-Ray</topic><topic>Dehydrogenase</topic><topic>EMBO27</topic><topic>EMBO40</topic><topic>GABA</topic><topic>Genotype & phenotype</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>NAD - metabolism</topic><topic>Neurotransmitters</topic><topic>Oxidation-Reduction</topic><topic>Physiology</topic><topic>Protein Conformation</topic><topic>redox switch</topic><topic>ROS</topic><topic>Sequence Alignment</topic><topic>SSADH</topic><topic>SSADH deficiency</topic><topic>Substrate Specificity</topic><topic>Succinate-Semialdehyde Dehydrogenase - chemistry</topic><topic>Succinate-Semialdehyde Dehydrogenase - genetics</topic><topic>Succinate-Semialdehyde Dehydrogenase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yeon-Gil</creatorcontrib><creatorcontrib>Lee, Sujin</creatorcontrib><creatorcontrib>Kwon, Oh-Sin</creatorcontrib><creatorcontrib>Park, So-Young</creatorcontrib><creatorcontrib>Lee, Su-Jin</creatorcontrib><creatorcontrib>Park, Bum-Joon</creatorcontrib><creatorcontrib>Kim, Kyung-Jin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Yeon-Gil</au><au>Lee, Sujin</au><au>Kwon, Oh-Sin</au><au>Park, So-Young</au><au>Lee, Su-Jin</au><au>Park, Bum-Joon</au><au>Kim, Kyung-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox-switch modulation of human SSADH by dynamic catalytic loop</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2009-04-08</date><risdate>2009</risdate><volume>28</volume><issue>7</issue><spage>959</spage><epage>968</epage><pages>959-968</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Succinic semialdehyde dehydrogenase (SSADH) is involved in the final degradation step of the inhibitory neurotransmitter γ‐aminobutyric acid by converting succinic semialdehyde to succinic acid in the mitochondrial matrix. SSADH deficiency, a rare autosomal recessive disease, exhibits variable clinical phenotypes, including psychomotor retardation, language delay, behaviour disturbance and convulsions. Here, we present crystal structures of both the oxidized and reduced forms of human SSADH. Interestingly, the structures show that the catalytic loop of the enzyme undergoes large structural changes depending on the redox status of the environment, which is mediated by a reversible disulphide bond formation between a catalytic Cys340 and an adjacent Cys342 residues located on the loop. Subsequent
in vivo
and
in vitro
studies reveal that the ‘dynamic catalytic loop’ confers a response to reactive oxygen species and changes in redox status, indicating that the redox‐switch modulation could be a physiological control mechanism of human SSADH. Structural basis for the substrate specificity of the enzyme and the impact of known missense point mutations associated with the disease pathogenesis are presented as well.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>19300440</pmid><doi>10.1038/emboj.2009.40</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2009-04, Vol.28 (7), p.959-968 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2670868 |
source | Springer Nature OA Free Journals |
subjects | Amino Acid Sequence Binding Sites Catalysis Catalytic Domain Cloning, Molecular Crystallography, X-Ray Dehydrogenase EMBO27 EMBO40 GABA Genotype & phenotype Humans Models, Molecular Molecular biology Molecular Sequence Data Mutation NAD - metabolism Neurotransmitters Oxidation-Reduction Physiology Protein Conformation redox switch ROS Sequence Alignment SSADH SSADH deficiency Substrate Specificity Succinate-Semialdehyde Dehydrogenase - chemistry Succinate-Semialdehyde Dehydrogenase - genetics Succinate-Semialdehyde Dehydrogenase - metabolism |
title | Redox-switch modulation of human SSADH by dynamic catalytic loop |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T17%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox-switch%20modulation%20of%20human%20SSADH%20by%20dynamic%20catalytic%20loop&rft.jtitle=The%20EMBO%20journal&rft.au=Kim,%20Yeon-Gil&rft.date=2009-04-08&rft.volume=28&rft.issue=7&rft.spage=959&rft.epage=968&rft.pages=959-968&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/emboj.2009.40&rft_dat=%3Cproquest_C6C%3E1675360501%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195259542&rft_id=info:pmid/19300440&rfr_iscdi=true |