Redox-switch modulation of human SSADH by dynamic catalytic loop

Succinic semialdehyde dehydrogenase (SSADH) is involved in the final degradation step of the inhibitory neurotransmitter γ‐aminobutyric acid by converting succinic semialdehyde to succinic acid in the mitochondrial matrix. SSADH deficiency, a rare autosomal recessive disease, exhibits variable clini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2009-04, Vol.28 (7), p.959-968
Hauptverfasser: Kim, Yeon-Gil, Lee, Sujin, Kwon, Oh-Sin, Park, So-Young, Lee, Su-Jin, Park, Bum-Joon, Kim, Kyung-Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 968
container_issue 7
container_start_page 959
container_title The EMBO journal
container_volume 28
creator Kim, Yeon-Gil
Lee, Sujin
Kwon, Oh-Sin
Park, So-Young
Lee, Su-Jin
Park, Bum-Joon
Kim, Kyung-Jin
description Succinic semialdehyde dehydrogenase (SSADH) is involved in the final degradation step of the inhibitory neurotransmitter γ‐aminobutyric acid by converting succinic semialdehyde to succinic acid in the mitochondrial matrix. SSADH deficiency, a rare autosomal recessive disease, exhibits variable clinical phenotypes, including psychomotor retardation, language delay, behaviour disturbance and convulsions. Here, we present crystal structures of both the oxidized and reduced forms of human SSADH. Interestingly, the structures show that the catalytic loop of the enzyme undergoes large structural changes depending on the redox status of the environment, which is mediated by a reversible disulphide bond formation between a catalytic Cys340 and an adjacent Cys342 residues located on the loop. Subsequent in vivo and in vitro studies reveal that the ‘dynamic catalytic loop’ confers a response to reactive oxygen species and changes in redox status, indicating that the redox‐switch modulation could be a physiological control mechanism of human SSADH. Structural basis for the substrate specificity of the enzyme and the impact of known missense point mutations associated with the disease pathogenesis are presented as well.
doi_str_mv 10.1038/emboj.2009.40
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2670868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1675360501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5350-fa876946a576e672e7bc2be9731eccfee7992586ea337ef8421711b93c1252a13</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokNhyRZFLNhluLbj1wZR-gS1IDFApW4sx3PTyTSJhzhpm39PpjMqBQlWvpK_c3yuDyEvKUwpcP0W6zwspwzATDN4RCY0k5AyUOIxmQCTNM2oNjvkWYxLABBa0adkhxoOkGUwIe-_4jzcpvGm7PwiqcO8r1xXhiYJRbLoa9cks9newUmSD8l8aFxd-sS7zlVDN05VCKvn5Enhqogvtucu-X50-G3_JD39cvxxf-809YILSAunlTSZdEJJlIqhyj3L0ShO0fsCURnDhJboOFdY6IxRRWluuKdMMEf5Lnm38V31eY1zj03Xusqu2rJ27WCDK-2fN025sJfh2jKpQEs9GrzZGrThZ4-xs3UZPVaVazD00UpFwXCtRvD1X-Ay9G0zLmepEUwYkbERSjeQb0OMLRb3SSjYdTH2rhi7LsZmMPKvHsb_TW-bGAGxAW7KCof_u9nDsw-f1vOdbrrRxVHSXGL7IO0_kmyTl7HD2_uHXHs1fgFXwp5_PrbnZxc_LvTBzHL-C9mxuLI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195259542</pqid></control><display><type>article</type><title>Redox-switch modulation of human SSADH by dynamic catalytic loop</title><source>Springer Nature OA Free Journals</source><creator>Kim, Yeon-Gil ; Lee, Sujin ; Kwon, Oh-Sin ; Park, So-Young ; Lee, Su-Jin ; Park, Bum-Joon ; Kim, Kyung-Jin</creator><creatorcontrib>Kim, Yeon-Gil ; Lee, Sujin ; Kwon, Oh-Sin ; Park, So-Young ; Lee, Su-Jin ; Park, Bum-Joon ; Kim, Kyung-Jin</creatorcontrib><description>Succinic semialdehyde dehydrogenase (SSADH) is involved in the final degradation step of the inhibitory neurotransmitter γ‐aminobutyric acid by converting succinic semialdehyde to succinic acid in the mitochondrial matrix. SSADH deficiency, a rare autosomal recessive disease, exhibits variable clinical phenotypes, including psychomotor retardation, language delay, behaviour disturbance and convulsions. Here, we present crystal structures of both the oxidized and reduced forms of human SSADH. Interestingly, the structures show that the catalytic loop of the enzyme undergoes large structural changes depending on the redox status of the environment, which is mediated by a reversible disulphide bond formation between a catalytic Cys340 and an adjacent Cys342 residues located on the loop. Subsequent in vivo and in vitro studies reveal that the ‘dynamic catalytic loop’ confers a response to reactive oxygen species and changes in redox status, indicating that the redox‐switch modulation could be a physiological control mechanism of human SSADH. Structural basis for the substrate specificity of the enzyme and the impact of known missense point mutations associated with the disease pathogenesis are presented as well.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/emboj.2009.40</identifier><identifier>PMID: 19300440</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Amino Acid Sequence ; Binding Sites ; Catalysis ; Catalytic Domain ; Cloning, Molecular ; Crystallography, X-Ray ; Dehydrogenase ; EMBO27 ; EMBO40 ; GABA ; Genotype &amp; phenotype ; Humans ; Models, Molecular ; Molecular biology ; Molecular Sequence Data ; Mutation ; NAD - metabolism ; Neurotransmitters ; Oxidation-Reduction ; Physiology ; Protein Conformation ; redox switch ; ROS ; Sequence Alignment ; SSADH ; SSADH deficiency ; Substrate Specificity ; Succinate-Semialdehyde Dehydrogenase - chemistry ; Succinate-Semialdehyde Dehydrogenase - genetics ; Succinate-Semialdehyde Dehydrogenase - metabolism</subject><ispartof>The EMBO journal, 2009-04, Vol.28 (7), p.959-968</ispartof><rights>European Molecular Biology Organization 2009</rights><rights>Copyright © 2009 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Apr 8, 2009</rights><rights>Copyright © 2009, European Molecular Biology Organization 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5350-fa876946a576e672e7bc2be9731eccfee7992586ea337ef8421711b93c1252a13</citedby><cites>FETCH-LOGICAL-c5350-fa876946a576e672e7bc2be9731eccfee7992586ea337ef8421711b93c1252a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670868/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670868/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/emboj.2009.40$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19300440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yeon-Gil</creatorcontrib><creatorcontrib>Lee, Sujin</creatorcontrib><creatorcontrib>Kwon, Oh-Sin</creatorcontrib><creatorcontrib>Park, So-Young</creatorcontrib><creatorcontrib>Lee, Su-Jin</creatorcontrib><creatorcontrib>Park, Bum-Joon</creatorcontrib><creatorcontrib>Kim, Kyung-Jin</creatorcontrib><title>Redox-switch modulation of human SSADH by dynamic catalytic loop</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Succinic semialdehyde dehydrogenase (SSADH) is involved in the final degradation step of the inhibitory neurotransmitter γ‐aminobutyric acid by converting succinic semialdehyde to succinic acid in the mitochondrial matrix. SSADH deficiency, a rare autosomal recessive disease, exhibits variable clinical phenotypes, including psychomotor retardation, language delay, behaviour disturbance and convulsions. Here, we present crystal structures of both the oxidized and reduced forms of human SSADH. Interestingly, the structures show that the catalytic loop of the enzyme undergoes large structural changes depending on the redox status of the environment, which is mediated by a reversible disulphide bond formation between a catalytic Cys340 and an adjacent Cys342 residues located on the loop. Subsequent in vivo and in vitro studies reveal that the ‘dynamic catalytic loop’ confers a response to reactive oxygen species and changes in redox status, indicating that the redox‐switch modulation could be a physiological control mechanism of human SSADH. Structural basis for the substrate specificity of the enzyme and the impact of known missense point mutations associated with the disease pathogenesis are presented as well.</description><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Cloning, Molecular</subject><subject>Crystallography, X-Ray</subject><subject>Dehydrogenase</subject><subject>EMBO27</subject><subject>EMBO40</subject><subject>GABA</subject><subject>Genotype &amp; phenotype</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>NAD - metabolism</subject><subject>Neurotransmitters</subject><subject>Oxidation-Reduction</subject><subject>Physiology</subject><subject>Protein Conformation</subject><subject>redox switch</subject><subject>ROS</subject><subject>Sequence Alignment</subject><subject>SSADH</subject><subject>SSADH deficiency</subject><subject>Substrate Specificity</subject><subject>Succinate-Semialdehyde Dehydrogenase - chemistry</subject><subject>Succinate-Semialdehyde Dehydrogenase - genetics</subject><subject>Succinate-Semialdehyde Dehydrogenase - metabolism</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtv1DAUhS0EokNhyRZFLNhluLbj1wZR-gS1IDFApW4sx3PTyTSJhzhpm39PpjMqBQlWvpK_c3yuDyEvKUwpcP0W6zwspwzATDN4RCY0k5AyUOIxmQCTNM2oNjvkWYxLABBa0adkhxoOkGUwIe-_4jzcpvGm7PwiqcO8r1xXhiYJRbLoa9cks9newUmSD8l8aFxd-sS7zlVDN05VCKvn5Enhqogvtucu-X50-G3_JD39cvxxf-809YILSAunlTSZdEJJlIqhyj3L0ShO0fsCURnDhJboOFdY6IxRRWluuKdMMEf5Lnm38V31eY1zj03Xusqu2rJ27WCDK-2fN025sJfh2jKpQEs9GrzZGrThZ4-xs3UZPVaVazD00UpFwXCtRvD1X-Ay9G0zLmepEUwYkbERSjeQb0OMLRb3SSjYdTH2rhi7LsZmMPKvHsb_TW-bGAGxAW7KCof_u9nDsw-f1vOdbrrRxVHSXGL7IO0_kmyTl7HD2_uHXHs1fgFXwp5_PrbnZxc_LvTBzHL-C9mxuLI</recordid><startdate>20090408</startdate><enddate>20090408</enddate><creator>Kim, Yeon-Gil</creator><creator>Lee, Sujin</creator><creator>Kwon, Oh-Sin</creator><creator>Park, So-Young</creator><creator>Lee, Su-Jin</creator><creator>Park, Bum-Joon</creator><creator>Kim, Kyung-Jin</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090408</creationdate><title>Redox-switch modulation of human SSADH by dynamic catalytic loop</title><author>Kim, Yeon-Gil ; Lee, Sujin ; Kwon, Oh-Sin ; Park, So-Young ; Lee, Su-Jin ; Park, Bum-Joon ; Kim, Kyung-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5350-fa876946a576e672e7bc2be9731eccfee7992586ea337ef8421711b93c1252a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Cloning, Molecular</topic><topic>Crystallography, X-Ray</topic><topic>Dehydrogenase</topic><topic>EMBO27</topic><topic>EMBO40</topic><topic>GABA</topic><topic>Genotype &amp; phenotype</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>NAD - metabolism</topic><topic>Neurotransmitters</topic><topic>Oxidation-Reduction</topic><topic>Physiology</topic><topic>Protein Conformation</topic><topic>redox switch</topic><topic>ROS</topic><topic>Sequence Alignment</topic><topic>SSADH</topic><topic>SSADH deficiency</topic><topic>Substrate Specificity</topic><topic>Succinate-Semialdehyde Dehydrogenase - chemistry</topic><topic>Succinate-Semialdehyde Dehydrogenase - genetics</topic><topic>Succinate-Semialdehyde Dehydrogenase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yeon-Gil</creatorcontrib><creatorcontrib>Lee, Sujin</creatorcontrib><creatorcontrib>Kwon, Oh-Sin</creatorcontrib><creatorcontrib>Park, So-Young</creatorcontrib><creatorcontrib>Lee, Su-Jin</creatorcontrib><creatorcontrib>Park, Bum-Joon</creatorcontrib><creatorcontrib>Kim, Kyung-Jin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Yeon-Gil</au><au>Lee, Sujin</au><au>Kwon, Oh-Sin</au><au>Park, So-Young</au><au>Lee, Su-Jin</au><au>Park, Bum-Joon</au><au>Kim, Kyung-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox-switch modulation of human SSADH by dynamic catalytic loop</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2009-04-08</date><risdate>2009</risdate><volume>28</volume><issue>7</issue><spage>959</spage><epage>968</epage><pages>959-968</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Succinic semialdehyde dehydrogenase (SSADH) is involved in the final degradation step of the inhibitory neurotransmitter γ‐aminobutyric acid by converting succinic semialdehyde to succinic acid in the mitochondrial matrix. SSADH deficiency, a rare autosomal recessive disease, exhibits variable clinical phenotypes, including psychomotor retardation, language delay, behaviour disturbance and convulsions. Here, we present crystal structures of both the oxidized and reduced forms of human SSADH. Interestingly, the structures show that the catalytic loop of the enzyme undergoes large structural changes depending on the redox status of the environment, which is mediated by a reversible disulphide bond formation between a catalytic Cys340 and an adjacent Cys342 residues located on the loop. Subsequent in vivo and in vitro studies reveal that the ‘dynamic catalytic loop’ confers a response to reactive oxygen species and changes in redox status, indicating that the redox‐switch modulation could be a physiological control mechanism of human SSADH. Structural basis for the substrate specificity of the enzyme and the impact of known missense point mutations associated with the disease pathogenesis are presented as well.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>19300440</pmid><doi>10.1038/emboj.2009.40</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2009-04, Vol.28 (7), p.959-968
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2670868
source Springer Nature OA Free Journals
subjects Amino Acid Sequence
Binding Sites
Catalysis
Catalytic Domain
Cloning, Molecular
Crystallography, X-Ray
Dehydrogenase
EMBO27
EMBO40
GABA
Genotype & phenotype
Humans
Models, Molecular
Molecular biology
Molecular Sequence Data
Mutation
NAD - metabolism
Neurotransmitters
Oxidation-Reduction
Physiology
Protein Conformation
redox switch
ROS
Sequence Alignment
SSADH
SSADH deficiency
Substrate Specificity
Succinate-Semialdehyde Dehydrogenase - chemistry
Succinate-Semialdehyde Dehydrogenase - genetics
Succinate-Semialdehyde Dehydrogenase - metabolism
title Redox-switch modulation of human SSADH by dynamic catalytic loop
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T17%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox-switch%20modulation%20of%20human%20SSADH%20by%20dynamic%20catalytic%20loop&rft.jtitle=The%20EMBO%20journal&rft.au=Kim,%20Yeon-Gil&rft.date=2009-04-08&rft.volume=28&rft.issue=7&rft.spage=959&rft.epage=968&rft.pages=959-968&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/emboj.2009.40&rft_dat=%3Cproquest_C6C%3E1675360501%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195259542&rft_id=info:pmid/19300440&rfr_iscdi=true