Mechanism of Dihydrouridine Synthase 2 from Yeast and the Importance of Modifications for Efficient tRNA Reduction

Dihydrouridine synthases (DUSs) are flavin-dependent enzymes that catalyze site-specific reduction of uracils in tRNAs. The mechanism of DUS 2 from Saccharomyces cerevisiae was studied. Previously published turnover rates for this DUS were very low. Our studies show that the catalytic cycle consists...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2009-04, Vol.284 (16), p.10324-10333
Hauptverfasser: Rider, Lance W., Ottosen, Mette B., Gattis, Samuel G., Palfey, Bruce A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10333
container_issue 16
container_start_page 10324
container_title The Journal of biological chemistry
container_volume 284
creator Rider, Lance W.
Ottosen, Mette B.
Gattis, Samuel G.
Palfey, Bruce A.
description Dihydrouridine synthases (DUSs) are flavin-dependent enzymes that catalyze site-specific reduction of uracils in tRNAs. The mechanism of DUS 2 from Saccharomyces cerevisiae was studied. Previously published turnover rates for this DUS were very low. Our studies show that the catalytic cycle consists of reductive and oxidative half-reactions. The enzyme is reduced by NADPH rapidly but has a very slow oxidative half-reaction using in vitro transcribed tRNA substrates. Using tRNALeu purified from a DUS 2 knockout strain of yeast we obtained reaction rate enhancements of 600-fold over in vitro transcribed substrates, indicating that other RNA modifications are required for rapid uracil reduction. This demonstrates a previously unknown ordering of modifications and indicates that dihydrouridine formation is a later step in tRNA maturation. We also show that an active site cysteine is important for catalysis, likely in the protonation of uracil during tRNA reduction. Dihydrouridine of modified tRNA from Escherichia coli was also oxidized to uridine showing the reaction to be reversible.
doi_str_mv 10.1074/jbc.M806137200
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2667719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820398744</els_id><sourcerecordid>67122617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-44c77c9aa8f305ceccf67e39039b784dde5c2543053789b810effa71d3ff426f3</originalsourceid><addsrcrecordid>eNqFkc9rFDEYhgdR7Fq9etQcxNus-TEzmVyEUlstdBVaC3oK2eTLTsrOZJtkWva_N8MsVg9iLiF8T17ej6coXhO8JJhXH27XerlqcUMYpxg_KRYEt6xkNfnxtFhgTEkpaN0eFS9ivMX5VII8L46IIExgQRdFWIHu1OBij7xFn1y3N8GPwRk3ALreD6lTERBFNvge_QQVE1KDQakDdNHvfEhq0DB9XXnjrNMqOT9EZH1AZza_HQwJpauvJ-gKzKin6cvimVXbCK8O93Fxc372_fRLefnt88XpyWWp65ansqo051oo1VqGaw1a24ZDrs3EmreVMVBrWld5xngr1i3BYK3ixDBrK9pYdlx8nHN347oHo3OToLZyF1yvwl565eTfk8F1cuPvJW0azonIAe8PAcHfjRCT7F3UsN2qAfwYZcMJpQ3h_wXpJIWIOoPLGdTBxxjA_m5DsJx8yuxTPvrMH978ucMjfhCYgXcz0LlN9-ACyLXzuoNe0raSpMmpjFYZeztjVnmpNsFFeXNNMWGY5AUIbTLRzgRkJfcOgoyTPA0mh-okjXf_KvkLEN3FZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21083195</pqid></control><display><type>article</type><title>Mechanism of Dihydrouridine Synthase 2 from Yeast and the Importance of Modifications for Efficient tRNA Reduction</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Rider, Lance W. ; Ottosen, Mette B. ; Gattis, Samuel G. ; Palfey, Bruce A.</creator><creatorcontrib>Rider, Lance W. ; Ottosen, Mette B. ; Gattis, Samuel G. ; Palfey, Bruce A.</creatorcontrib><description>Dihydrouridine synthases (DUSs) are flavin-dependent enzymes that catalyze site-specific reduction of uracils in tRNAs. The mechanism of DUS 2 from Saccharomyces cerevisiae was studied. Previously published turnover rates for this DUS were very low. Our studies show that the catalytic cycle consists of reductive and oxidative half-reactions. The enzyme is reduced by NADPH rapidly but has a very slow oxidative half-reaction using in vitro transcribed tRNA substrates. Using tRNALeu purified from a DUS 2 knockout strain of yeast we obtained reaction rate enhancements of 600-fold over in vitro transcribed substrates, indicating that other RNA modifications are required for rapid uracil reduction. This demonstrates a previously unknown ordering of modifications and indicates that dihydrouridine formation is a later step in tRNA maturation. We also show that an active site cysteine is important for catalysis, likely in the protonation of uracil during tRNA reduction. Dihydrouridine of modified tRNA from Escherichia coli was also oxidized to uridine showing the reaction to be reversible.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M806137200</identifier><identifier>PMID: 19139092</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Catalytic Domain ; Enzyme Catalysis and Regulation ; Escherichia coli ; Molecular Structure ; NADP - chemistry ; NADP - metabolism ; Oxidation-Reduction ; Oxidoreductases - chemistry ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; RNA, Transfer, Leu - chemistry ; RNA, Transfer, Leu - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Uracil - metabolism</subject><ispartof>The Journal of biological chemistry, 2009-04, Vol.284 (16), p.10324-10333</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Copyright © 2009, The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-44c77c9aa8f305ceccf67e39039b784dde5c2543053789b810effa71d3ff426f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667719/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667719/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19139092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rider, Lance W.</creatorcontrib><creatorcontrib>Ottosen, Mette B.</creatorcontrib><creatorcontrib>Gattis, Samuel G.</creatorcontrib><creatorcontrib>Palfey, Bruce A.</creatorcontrib><title>Mechanism of Dihydrouridine Synthase 2 from Yeast and the Importance of Modifications for Efficient tRNA Reduction</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Dihydrouridine synthases (DUSs) are flavin-dependent enzymes that catalyze site-specific reduction of uracils in tRNAs. The mechanism of DUS 2 from Saccharomyces cerevisiae was studied. Previously published turnover rates for this DUS were very low. Our studies show that the catalytic cycle consists of reductive and oxidative half-reactions. The enzyme is reduced by NADPH rapidly but has a very slow oxidative half-reaction using in vitro transcribed tRNA substrates. Using tRNALeu purified from a DUS 2 knockout strain of yeast we obtained reaction rate enhancements of 600-fold over in vitro transcribed substrates, indicating that other RNA modifications are required for rapid uracil reduction. This demonstrates a previously unknown ordering of modifications and indicates that dihydrouridine formation is a later step in tRNA maturation. We also show that an active site cysteine is important for catalysis, likely in the protonation of uracil during tRNA reduction. Dihydrouridine of modified tRNA from Escherichia coli was also oxidized to uridine showing the reaction to be reversible.</description><subject>Catalytic Domain</subject><subject>Enzyme Catalysis and Regulation</subject><subject>Escherichia coli</subject><subject>Molecular Structure</subject><subject>NADP - chemistry</subject><subject>NADP - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>RNA, Transfer, Leu - chemistry</subject><subject>RNA, Transfer, Leu - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Uracil - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEYhgdR7Fq9etQcxNus-TEzmVyEUlstdBVaC3oK2eTLTsrOZJtkWva_N8MsVg9iLiF8T17ej6coXhO8JJhXH27XerlqcUMYpxg_KRYEt6xkNfnxtFhgTEkpaN0eFS9ivMX5VII8L46IIExgQRdFWIHu1OBij7xFn1y3N8GPwRk3ALreD6lTERBFNvge_QQVE1KDQakDdNHvfEhq0DB9XXnjrNMqOT9EZH1AZza_HQwJpauvJ-gKzKin6cvimVXbCK8O93Fxc372_fRLefnt88XpyWWp65ansqo051oo1VqGaw1a24ZDrs3EmreVMVBrWld5xngr1i3BYK3ixDBrK9pYdlx8nHN347oHo3OToLZyF1yvwl565eTfk8F1cuPvJW0azonIAe8PAcHfjRCT7F3UsN2qAfwYZcMJpQ3h_wXpJIWIOoPLGdTBxxjA_m5DsJx8yuxTPvrMH978ucMjfhCYgXcz0LlN9-ACyLXzuoNe0raSpMmpjFYZeztjVnmpNsFFeXNNMWGY5AUIbTLRzgRkJfcOgoyTPA0mh-okjXf_KvkLEN3FZA</recordid><startdate>20090417</startdate><enddate>20090417</enddate><creator>Rider, Lance W.</creator><creator>Ottosen, Mette B.</creator><creator>Gattis, Samuel G.</creator><creator>Palfey, Bruce A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope><scope>M7N</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090417</creationdate><title>Mechanism of Dihydrouridine Synthase 2 from Yeast and the Importance of Modifications for Efficient tRNA Reduction</title><author>Rider, Lance W. ; Ottosen, Mette B. ; Gattis, Samuel G. ; Palfey, Bruce A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-44c77c9aa8f305ceccf67e39039b784dde5c2543053789b810effa71d3ff426f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Catalytic Domain</topic><topic>Enzyme Catalysis and Regulation</topic><topic>Escherichia coli</topic><topic>Molecular Structure</topic><topic>NADP - chemistry</topic><topic>NADP - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>RNA, Transfer, Leu - chemistry</topic><topic>RNA, Transfer, Leu - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Uracil - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rider, Lance W.</creatorcontrib><creatorcontrib>Ottosen, Mette B.</creatorcontrib><creatorcontrib>Gattis, Samuel G.</creatorcontrib><creatorcontrib>Palfey, Bruce A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rider, Lance W.</au><au>Ottosen, Mette B.</au><au>Gattis, Samuel G.</au><au>Palfey, Bruce A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Dihydrouridine Synthase 2 from Yeast and the Importance of Modifications for Efficient tRNA Reduction</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-04-17</date><risdate>2009</risdate><volume>284</volume><issue>16</issue><spage>10324</spage><epage>10333</epage><pages>10324-10333</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Dihydrouridine synthases (DUSs) are flavin-dependent enzymes that catalyze site-specific reduction of uracils in tRNAs. The mechanism of DUS 2 from Saccharomyces cerevisiae was studied. Previously published turnover rates for this DUS were very low. Our studies show that the catalytic cycle consists of reductive and oxidative half-reactions. The enzyme is reduced by NADPH rapidly but has a very slow oxidative half-reaction using in vitro transcribed tRNA substrates. Using tRNALeu purified from a DUS 2 knockout strain of yeast we obtained reaction rate enhancements of 600-fold over in vitro transcribed substrates, indicating that other RNA modifications are required for rapid uracil reduction. This demonstrates a previously unknown ordering of modifications and indicates that dihydrouridine formation is a later step in tRNA maturation. We also show that an active site cysteine is important for catalysis, likely in the protonation of uracil during tRNA reduction. Dihydrouridine of modified tRNA from Escherichia coli was also oxidized to uridine showing the reaction to be reversible.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19139092</pmid><doi>10.1074/jbc.M806137200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2009-04, Vol.284 (16), p.10324-10333
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2667719
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Catalytic Domain
Enzyme Catalysis and Regulation
Escherichia coli
Molecular Structure
NADP - chemistry
NADP - metabolism
Oxidation-Reduction
Oxidoreductases - chemistry
Oxidoreductases - genetics
Oxidoreductases - metabolism
RNA, Transfer, Leu - chemistry
RNA, Transfer, Leu - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Uracil - metabolism
title Mechanism of Dihydrouridine Synthase 2 from Yeast and the Importance of Modifications for Efficient tRNA Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Dihydrouridine%20Synthase%202%20from%20Yeast%20and%20the%20Importance%20of%20Modifications%20for%20Efficient%20tRNA%20Reduction&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Rider,%20Lance%20W.&rft.date=2009-04-17&rft.volume=284&rft.issue=16&rft.spage=10324&rft.epage=10333&rft.pages=10324-10333&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M806137200&rft_dat=%3Cproquest_pubme%3E67122617%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21083195&rft_id=info:pmid/19139092&rft_els_id=S0021925820398744&rfr_iscdi=true