Mechanism of Dihydrouridine Synthase 2 from Yeast and the Importance of Modifications for Efficient tRNA Reduction
Dihydrouridine synthases (DUSs) are flavin-dependent enzymes that catalyze site-specific reduction of uracils in tRNAs. The mechanism of DUS 2 from Saccharomyces cerevisiae was studied. Previously published turnover rates for this DUS were very low. Our studies show that the catalytic cycle consists...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2009-04, Vol.284 (16), p.10324-10333 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10333 |
---|---|
container_issue | 16 |
container_start_page | 10324 |
container_title | The Journal of biological chemistry |
container_volume | 284 |
creator | Rider, Lance W. Ottosen, Mette B. Gattis, Samuel G. Palfey, Bruce A. |
description | Dihydrouridine synthases (DUSs) are flavin-dependent enzymes that catalyze site-specific reduction of uracils in tRNAs. The mechanism of DUS 2 from Saccharomyces cerevisiae was studied. Previously published turnover rates for this DUS were very low. Our studies show that the catalytic cycle consists of reductive and oxidative half-reactions. The enzyme is reduced by NADPH rapidly but has a very slow oxidative half-reaction using in vitro transcribed tRNA substrates. Using tRNALeu purified from a DUS 2 knockout strain of yeast we obtained reaction rate enhancements of 600-fold over in vitro transcribed substrates, indicating that other RNA modifications are required for rapid uracil reduction. This demonstrates a previously unknown ordering of modifications and indicates that dihydrouridine formation is a later step in tRNA maturation. We also show that an active site cysteine is important for catalysis, likely in the protonation of uracil during tRNA reduction. Dihydrouridine of modified tRNA from Escherichia coli was also oxidized to uridine showing the reaction to be reversible. |
doi_str_mv | 10.1074/jbc.M806137200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2667719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820398744</els_id><sourcerecordid>67122617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-44c77c9aa8f305ceccf67e39039b784dde5c2543053789b810effa71d3ff426f3</originalsourceid><addsrcrecordid>eNqFkc9rFDEYhgdR7Fq9etQcxNus-TEzmVyEUlstdBVaC3oK2eTLTsrOZJtkWva_N8MsVg9iLiF8T17ej6coXhO8JJhXH27XerlqcUMYpxg_KRYEt6xkNfnxtFhgTEkpaN0eFS9ivMX5VII8L46IIExgQRdFWIHu1OBij7xFn1y3N8GPwRk3ALreD6lTERBFNvge_QQVE1KDQakDdNHvfEhq0DB9XXnjrNMqOT9EZH1AZza_HQwJpauvJ-gKzKin6cvimVXbCK8O93Fxc372_fRLefnt88XpyWWp65ansqo051oo1VqGaw1a24ZDrs3EmreVMVBrWld5xngr1i3BYK3ixDBrK9pYdlx8nHN347oHo3OToLZyF1yvwl565eTfk8F1cuPvJW0azonIAe8PAcHfjRCT7F3UsN2qAfwYZcMJpQ3h_wXpJIWIOoPLGdTBxxjA_m5DsJx8yuxTPvrMH978ucMjfhCYgXcz0LlN9-ACyLXzuoNe0raSpMmpjFYZeztjVnmpNsFFeXNNMWGY5AUIbTLRzgRkJfcOgoyTPA0mh-okjXf_KvkLEN3FZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21083195</pqid></control><display><type>article</type><title>Mechanism of Dihydrouridine Synthase 2 from Yeast and the Importance of Modifications for Efficient tRNA Reduction</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Rider, Lance W. ; Ottosen, Mette B. ; Gattis, Samuel G. ; Palfey, Bruce A.</creator><creatorcontrib>Rider, Lance W. ; Ottosen, Mette B. ; Gattis, Samuel G. ; Palfey, Bruce A.</creatorcontrib><description>Dihydrouridine synthases (DUSs) are flavin-dependent enzymes that catalyze site-specific reduction of uracils in tRNAs. The mechanism of DUS 2 from Saccharomyces cerevisiae was studied. Previously published turnover rates for this DUS were very low. Our studies show that the catalytic cycle consists of reductive and oxidative half-reactions. The enzyme is reduced by NADPH rapidly but has a very slow oxidative half-reaction using in vitro transcribed tRNA substrates. Using tRNALeu purified from a DUS 2 knockout strain of yeast we obtained reaction rate enhancements of 600-fold over in vitro transcribed substrates, indicating that other RNA modifications are required for rapid uracil reduction. This demonstrates a previously unknown ordering of modifications and indicates that dihydrouridine formation is a later step in tRNA maturation. We also show that an active site cysteine is important for catalysis, likely in the protonation of uracil during tRNA reduction. Dihydrouridine of modified tRNA from Escherichia coli was also oxidized to uridine showing the reaction to be reversible.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M806137200</identifier><identifier>PMID: 19139092</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Catalytic Domain ; Enzyme Catalysis and Regulation ; Escherichia coli ; Molecular Structure ; NADP - chemistry ; NADP - metabolism ; Oxidation-Reduction ; Oxidoreductases - chemistry ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; RNA, Transfer, Leu - chemistry ; RNA, Transfer, Leu - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Uracil - metabolism</subject><ispartof>The Journal of biological chemistry, 2009-04, Vol.284 (16), p.10324-10333</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Copyright © 2009, The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-44c77c9aa8f305ceccf67e39039b784dde5c2543053789b810effa71d3ff426f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667719/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667719/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19139092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rider, Lance W.</creatorcontrib><creatorcontrib>Ottosen, Mette B.</creatorcontrib><creatorcontrib>Gattis, Samuel G.</creatorcontrib><creatorcontrib>Palfey, Bruce A.</creatorcontrib><title>Mechanism of Dihydrouridine Synthase 2 from Yeast and the Importance of Modifications for Efficient tRNA Reduction</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Dihydrouridine synthases (DUSs) are flavin-dependent enzymes that catalyze site-specific reduction of uracils in tRNAs. The mechanism of DUS 2 from Saccharomyces cerevisiae was studied. Previously published turnover rates for this DUS were very low. Our studies show that the catalytic cycle consists of reductive and oxidative half-reactions. The enzyme is reduced by NADPH rapidly but has a very slow oxidative half-reaction using in vitro transcribed tRNA substrates. Using tRNALeu purified from a DUS 2 knockout strain of yeast we obtained reaction rate enhancements of 600-fold over in vitro transcribed substrates, indicating that other RNA modifications are required for rapid uracil reduction. This demonstrates a previously unknown ordering of modifications and indicates that dihydrouridine formation is a later step in tRNA maturation. We also show that an active site cysteine is important for catalysis, likely in the protonation of uracil during tRNA reduction. Dihydrouridine of modified tRNA from Escherichia coli was also oxidized to uridine showing the reaction to be reversible.</description><subject>Catalytic Domain</subject><subject>Enzyme Catalysis and Regulation</subject><subject>Escherichia coli</subject><subject>Molecular Structure</subject><subject>NADP - chemistry</subject><subject>NADP - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>RNA, Transfer, Leu - chemistry</subject><subject>RNA, Transfer, Leu - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Uracil - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEYhgdR7Fq9etQcxNus-TEzmVyEUlstdBVaC3oK2eTLTsrOZJtkWva_N8MsVg9iLiF8T17ej6coXhO8JJhXH27XerlqcUMYpxg_KRYEt6xkNfnxtFhgTEkpaN0eFS9ivMX5VII8L46IIExgQRdFWIHu1OBij7xFn1y3N8GPwRk3ALreD6lTERBFNvge_QQVE1KDQakDdNHvfEhq0DB9XXnjrNMqOT9EZH1AZza_HQwJpauvJ-gKzKin6cvimVXbCK8O93Fxc372_fRLefnt88XpyWWp65ansqo051oo1VqGaw1a24ZDrs3EmreVMVBrWld5xngr1i3BYK3ixDBrK9pYdlx8nHN347oHo3OToLZyF1yvwl565eTfk8F1cuPvJW0azonIAe8PAcHfjRCT7F3UsN2qAfwYZcMJpQ3h_wXpJIWIOoPLGdTBxxjA_m5DsJx8yuxTPvrMH978ucMjfhCYgXcz0LlN9-ACyLXzuoNe0raSpMmpjFYZeztjVnmpNsFFeXNNMWGY5AUIbTLRzgRkJfcOgoyTPA0mh-okjXf_KvkLEN3FZA</recordid><startdate>20090417</startdate><enddate>20090417</enddate><creator>Rider, Lance W.</creator><creator>Ottosen, Mette B.</creator><creator>Gattis, Samuel G.</creator><creator>Palfey, Bruce A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope><scope>M7N</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090417</creationdate><title>Mechanism of Dihydrouridine Synthase 2 from Yeast and the Importance of Modifications for Efficient tRNA Reduction</title><author>Rider, Lance W. ; Ottosen, Mette B. ; Gattis, Samuel G. ; Palfey, Bruce A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-44c77c9aa8f305ceccf67e39039b784dde5c2543053789b810effa71d3ff426f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Catalytic Domain</topic><topic>Enzyme Catalysis and Regulation</topic><topic>Escherichia coli</topic><topic>Molecular Structure</topic><topic>NADP - chemistry</topic><topic>NADP - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>RNA, Transfer, Leu - chemistry</topic><topic>RNA, Transfer, Leu - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Uracil - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rider, Lance W.</creatorcontrib><creatorcontrib>Ottosen, Mette B.</creatorcontrib><creatorcontrib>Gattis, Samuel G.</creatorcontrib><creatorcontrib>Palfey, Bruce A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rider, Lance W.</au><au>Ottosen, Mette B.</au><au>Gattis, Samuel G.</au><au>Palfey, Bruce A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Dihydrouridine Synthase 2 from Yeast and the Importance of Modifications for Efficient tRNA Reduction</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-04-17</date><risdate>2009</risdate><volume>284</volume><issue>16</issue><spage>10324</spage><epage>10333</epage><pages>10324-10333</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Dihydrouridine synthases (DUSs) are flavin-dependent enzymes that catalyze site-specific reduction of uracils in tRNAs. The mechanism of DUS 2 from Saccharomyces cerevisiae was studied. Previously published turnover rates for this DUS were very low. Our studies show that the catalytic cycle consists of reductive and oxidative half-reactions. The enzyme is reduced by NADPH rapidly but has a very slow oxidative half-reaction using in vitro transcribed tRNA substrates. Using tRNALeu purified from a DUS 2 knockout strain of yeast we obtained reaction rate enhancements of 600-fold over in vitro transcribed substrates, indicating that other RNA modifications are required for rapid uracil reduction. This demonstrates a previously unknown ordering of modifications and indicates that dihydrouridine formation is a later step in tRNA maturation. We also show that an active site cysteine is important for catalysis, likely in the protonation of uracil during tRNA reduction. Dihydrouridine of modified tRNA from Escherichia coli was also oxidized to uridine showing the reaction to be reversible.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19139092</pmid><doi>10.1074/jbc.M806137200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2009-04, Vol.284 (16), p.10324-10333 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2667719 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Catalytic Domain Enzyme Catalysis and Regulation Escherichia coli Molecular Structure NADP - chemistry NADP - metabolism Oxidation-Reduction Oxidoreductases - chemistry Oxidoreductases - genetics Oxidoreductases - metabolism RNA, Transfer, Leu - chemistry RNA, Transfer, Leu - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Uracil - metabolism |
title | Mechanism of Dihydrouridine Synthase 2 from Yeast and the Importance of Modifications for Efficient tRNA Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Dihydrouridine%20Synthase%202%20from%20Yeast%20and%20the%20Importance%20of%20Modifications%20for%20Efficient%20tRNA%20Reduction&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Rider,%20Lance%20W.&rft.date=2009-04-17&rft.volume=284&rft.issue=16&rft.spage=10324&rft.epage=10333&rft.pages=10324-10333&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M806137200&rft_dat=%3Cproquest_pubme%3E67122617%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21083195&rft_id=info:pmid/19139092&rft_els_id=S0021925820398744&rfr_iscdi=true |