Mitochondrial Fatty Acid Synthesis Type II: More than Just Fatty Acids

Eukaryotes harbor a highly conserved mitochondrial pathway for fatty acid synthesis (FAS), which is completely independent of the eukaryotic cytosolic FAS apparatus. The activities of the mitochondrial FAS system are catalyzed by soluble enzymes, and the pathway thus resembles its prokaryotic counte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2009-04, Vol.284 (14), p.9011-9015
Hauptverfasser: Hiltunen, J.Kalervo, Schonauer, Melissa S., Autio, Kaija J., Mittelmeier, Telsa M., Kastaniotis, Alexander J., Dieckmann, Carol L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9015
container_issue 14
container_start_page 9011
container_title The Journal of biological chemistry
container_volume 284
creator Hiltunen, J.Kalervo
Schonauer, Melissa S.
Autio, Kaija J.
Mittelmeier, Telsa M.
Kastaniotis, Alexander J.
Dieckmann, Carol L.
description Eukaryotes harbor a highly conserved mitochondrial pathway for fatty acid synthesis (FAS), which is completely independent of the eukaryotic cytosolic FAS apparatus. The activities of the mitochondrial FAS system are catalyzed by soluble enzymes, and the pathway thus resembles its prokaryotic counterparts. Except for octanoic acid, which is the direct precursor for lipoic acid synthesis, other end products and functions of the mitochondrial FAS pathway are still largely enigmatic. In addition to low cellular levels of lipoic acid, disruption of genes encoding mitochondrial FAS enzymes in yeast results in a respiratory-deficient phenotype and small rudimentary mitochondria. Recently, two distinct links between mitochondrial FAS and RNA processing have been discovered in vertebrates and yeast, respectively. In vertebrates, the mitochondrial 3-hydroxyacyl-acyl carrier protein dehydratase and the RPP14 subunit of RNase P are encoded by the same bicistronic transcript in an evolutionarily conserved arrangement that is unusual for eukaryotes. In yeast, defects in mitochondrial FAS result in inefficient RNase P cleavage in the organelle. The intersection of mitochondrial FAS and RNA metabolism in both systems provides a novel mechanism for the coordination of intermediary metabolism in eukaryotic cells.
doi_str_mv 10.1074/jbc.R800068200
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2666548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820322948</els_id><sourcerecordid>67084172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-a88815854de1559ebbd9d1a22d0f90bc79da908731adaeea00172dcd59b4d7a33</originalsourceid><addsrcrecordid>eNp10E1vEzEQBmALgWgoXDnCSkjcNsx4v2wOSFVFIKgVEm0lbpbXnmRdJetgO0X597jaiJYDJx_8zDujl7HXCHOErv5w25v5DwEAreAAT9gMQVRl1eDPp2wGwLGUvBEn7EWMt1lBLfE5O0EJXLRCzNji0iVvBj_a4PSmWOiUDsWZcba4OoxpoOhicX3YUbFcfiwufaAiDXosvu1jeoTjS_ZspTeRXh3fU3az-Hx9_rW8-P5leX52UZoWIJVaCIGNaGpL2DSS-t5Ki5pzCysJvemk1RJEV6G2mkgDYMetsY3sa9vpqjpln6bc3b7fkjU0pqA3ahfcVoeD8tqpf39GN6i1v1O8bdumFjng_TEg-F97ikltXTS02eiR_D6qtgNR56UZzidogo8x0OrvEgR1X73K1auH6vPAm8enPfBj1xm8m8Dg1sNvF0j1LldPW8VFrbBWEhCzejuplfZKr4OL6uaKA1aALYIU90JMgnLRd46CisbRaMjmTJOU9e5_N_4BFD6nUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67084172</pqid></control><display><type>article</type><title>Mitochondrial Fatty Acid Synthesis Type II: More than Just Fatty Acids</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hiltunen, J.Kalervo ; Schonauer, Melissa S. ; Autio, Kaija J. ; Mittelmeier, Telsa M. ; Kastaniotis, Alexander J. ; Dieckmann, Carol L.</creator><creatorcontrib>Hiltunen, J.Kalervo ; Schonauer, Melissa S. ; Autio, Kaija J. ; Mittelmeier, Telsa M. ; Kastaniotis, Alexander J. ; Dieckmann, Carol L.</creatorcontrib><description>Eukaryotes harbor a highly conserved mitochondrial pathway for fatty acid synthesis (FAS), which is completely independent of the eukaryotic cytosolic FAS apparatus. The activities of the mitochondrial FAS system are catalyzed by soluble enzymes, and the pathway thus resembles its prokaryotic counterparts. Except for octanoic acid, which is the direct precursor for lipoic acid synthesis, other end products and functions of the mitochondrial FAS pathway are still largely enigmatic. In addition to low cellular levels of lipoic acid, disruption of genes encoding mitochondrial FAS enzymes in yeast results in a respiratory-deficient phenotype and small rudimentary mitochondria. Recently, two distinct links between mitochondrial FAS and RNA processing have been discovered in vertebrates and yeast, respectively. In vertebrates, the mitochondrial 3-hydroxyacyl-acyl carrier protein dehydratase and the RPP14 subunit of RNase P are encoded by the same bicistronic transcript in an evolutionarily conserved arrangement that is unusual for eukaryotes. In yeast, defects in mitochondrial FAS result in inefficient RNase P cleavage in the organelle. The intersection of mitochondrial FAS and RNA metabolism in both systems provides a novel mechanism for the coordination of intermediary metabolism in eukaryotic cells.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.R800068200</identifier><identifier>PMID: 19028688</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Fatty Acids - biosynthesis ; Genetic Linkage - genetics ; Humans ; Minireviews ; Mitochondria - metabolism ; Ribonuclease P - metabolism ; RNA, Transfer - genetics ; Thioctic Acid - biosynthesis</subject><ispartof>The Journal of biological chemistry, 2009-04, Vol.284 (14), p.9011-9015</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Copyright © 2009, The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-a88815854de1559ebbd9d1a22d0f90bc79da908731adaeea00172dcd59b4d7a33</citedby><cites>FETCH-LOGICAL-c600t-a88815854de1559ebbd9d1a22d0f90bc79da908731adaeea00172dcd59b4d7a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666548/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666548/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19028688$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hiltunen, J.Kalervo</creatorcontrib><creatorcontrib>Schonauer, Melissa S.</creatorcontrib><creatorcontrib>Autio, Kaija J.</creatorcontrib><creatorcontrib>Mittelmeier, Telsa M.</creatorcontrib><creatorcontrib>Kastaniotis, Alexander J.</creatorcontrib><creatorcontrib>Dieckmann, Carol L.</creatorcontrib><title>Mitochondrial Fatty Acid Synthesis Type II: More than Just Fatty Acids</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Eukaryotes harbor a highly conserved mitochondrial pathway for fatty acid synthesis (FAS), which is completely independent of the eukaryotic cytosolic FAS apparatus. The activities of the mitochondrial FAS system are catalyzed by soluble enzymes, and the pathway thus resembles its prokaryotic counterparts. Except for octanoic acid, which is the direct precursor for lipoic acid synthesis, other end products and functions of the mitochondrial FAS pathway are still largely enigmatic. In addition to low cellular levels of lipoic acid, disruption of genes encoding mitochondrial FAS enzymes in yeast results in a respiratory-deficient phenotype and small rudimentary mitochondria. Recently, two distinct links between mitochondrial FAS and RNA processing have been discovered in vertebrates and yeast, respectively. In vertebrates, the mitochondrial 3-hydroxyacyl-acyl carrier protein dehydratase and the RPP14 subunit of RNase P are encoded by the same bicistronic transcript in an evolutionarily conserved arrangement that is unusual for eukaryotes. In yeast, defects in mitochondrial FAS result in inefficient RNase P cleavage in the organelle. The intersection of mitochondrial FAS and RNA metabolism in both systems provides a novel mechanism for the coordination of intermediary metabolism in eukaryotic cells.</description><subject>Animals</subject><subject>Fatty Acids - biosynthesis</subject><subject>Genetic Linkage - genetics</subject><subject>Humans</subject><subject>Minireviews</subject><subject>Mitochondria - metabolism</subject><subject>Ribonuclease P - metabolism</subject><subject>RNA, Transfer - genetics</subject><subject>Thioctic Acid - biosynthesis</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1vEzEQBmALgWgoXDnCSkjcNsx4v2wOSFVFIKgVEm0lbpbXnmRdJetgO0X597jaiJYDJx_8zDujl7HXCHOErv5w25v5DwEAreAAT9gMQVRl1eDPp2wGwLGUvBEn7EWMt1lBLfE5O0EJXLRCzNji0iVvBj_a4PSmWOiUDsWZcba4OoxpoOhicX3YUbFcfiwufaAiDXosvu1jeoTjS_ZspTeRXh3fU3az-Hx9_rW8-P5leX52UZoWIJVaCIGNaGpL2DSS-t5Ki5pzCysJvemk1RJEV6G2mkgDYMetsY3sa9vpqjpln6bc3b7fkjU0pqA3ahfcVoeD8tqpf39GN6i1v1O8bdumFjng_TEg-F97ikltXTS02eiR_D6qtgNR56UZzidogo8x0OrvEgR1X73K1auH6vPAm8enPfBj1xm8m8Dg1sNvF0j1LldPW8VFrbBWEhCzejuplfZKr4OL6uaKA1aALYIU90JMgnLRd46CisbRaMjmTJOU9e5_N_4BFD6nUw</recordid><startdate>20090403</startdate><enddate>20090403</enddate><creator>Hiltunen, J.Kalervo</creator><creator>Schonauer, Melissa S.</creator><creator>Autio, Kaija J.</creator><creator>Mittelmeier, Telsa M.</creator><creator>Kastaniotis, Alexander J.</creator><creator>Dieckmann, Carol L.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090403</creationdate><title>Mitochondrial Fatty Acid Synthesis Type II: More than Just Fatty Acids</title><author>Hiltunen, J.Kalervo ; Schonauer, Melissa S. ; Autio, Kaija J. ; Mittelmeier, Telsa M. ; Kastaniotis, Alexander J. ; Dieckmann, Carol L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-a88815854de1559ebbd9d1a22d0f90bc79da908731adaeea00172dcd59b4d7a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Fatty Acids - biosynthesis</topic><topic>Genetic Linkage - genetics</topic><topic>Humans</topic><topic>Minireviews</topic><topic>Mitochondria - metabolism</topic><topic>Ribonuclease P - metabolism</topic><topic>RNA, Transfer - genetics</topic><topic>Thioctic Acid - biosynthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiltunen, J.Kalervo</creatorcontrib><creatorcontrib>Schonauer, Melissa S.</creatorcontrib><creatorcontrib>Autio, Kaija J.</creatorcontrib><creatorcontrib>Mittelmeier, Telsa M.</creatorcontrib><creatorcontrib>Kastaniotis, Alexander J.</creatorcontrib><creatorcontrib>Dieckmann, Carol L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiltunen, J.Kalervo</au><au>Schonauer, Melissa S.</au><au>Autio, Kaija J.</au><au>Mittelmeier, Telsa M.</au><au>Kastaniotis, Alexander J.</au><au>Dieckmann, Carol L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Fatty Acid Synthesis Type II: More than Just Fatty Acids</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-04-03</date><risdate>2009</risdate><volume>284</volume><issue>14</issue><spage>9011</spage><epage>9015</epage><pages>9011-9015</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Eukaryotes harbor a highly conserved mitochondrial pathway for fatty acid synthesis (FAS), which is completely independent of the eukaryotic cytosolic FAS apparatus. The activities of the mitochondrial FAS system are catalyzed by soluble enzymes, and the pathway thus resembles its prokaryotic counterparts. Except for octanoic acid, which is the direct precursor for lipoic acid synthesis, other end products and functions of the mitochondrial FAS pathway are still largely enigmatic. In addition to low cellular levels of lipoic acid, disruption of genes encoding mitochondrial FAS enzymes in yeast results in a respiratory-deficient phenotype and small rudimentary mitochondria. Recently, two distinct links between mitochondrial FAS and RNA processing have been discovered in vertebrates and yeast, respectively. In vertebrates, the mitochondrial 3-hydroxyacyl-acyl carrier protein dehydratase and the RPP14 subunit of RNase P are encoded by the same bicistronic transcript in an evolutionarily conserved arrangement that is unusual for eukaryotes. In yeast, defects in mitochondrial FAS result in inefficient RNase P cleavage in the organelle. The intersection of mitochondrial FAS and RNA metabolism in both systems provides a novel mechanism for the coordination of intermediary metabolism in eukaryotic cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19028688</pmid><doi>10.1074/jbc.R800068200</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2009-04, Vol.284 (14), p.9011-9015
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2666548
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Fatty Acids - biosynthesis
Genetic Linkage - genetics
Humans
Minireviews
Mitochondria - metabolism
Ribonuclease P - metabolism
RNA, Transfer - genetics
Thioctic Acid - biosynthesis
title Mitochondrial Fatty Acid Synthesis Type II: More than Just Fatty Acids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Fatty%20Acid%20Synthesis%20Type%20II:%20More%20than%20Just%20Fatty%20Acids&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Hiltunen,%20J.Kalervo&rft.date=2009-04-03&rft.volume=284&rft.issue=14&rft.spage=9011&rft.epage=9015&rft.pages=9011-9015&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.R800068200&rft_dat=%3Cproquest_pubme%3E67084172%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67084172&rft_id=info:pmid/19028688&rft_els_id=S0021925820322948&rfr_iscdi=true