Mitochondrial Fatty Acid Synthesis Type II: More than Just Fatty Acids
Eukaryotes harbor a highly conserved mitochondrial pathway for fatty acid synthesis (FAS), which is completely independent of the eukaryotic cytosolic FAS apparatus. The activities of the mitochondrial FAS system are catalyzed by soluble enzymes, and the pathway thus resembles its prokaryotic counte...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2009-04, Vol.284 (14), p.9011-9015 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9015 |
---|---|
container_issue | 14 |
container_start_page | 9011 |
container_title | The Journal of biological chemistry |
container_volume | 284 |
creator | Hiltunen, J.Kalervo Schonauer, Melissa S. Autio, Kaija J. Mittelmeier, Telsa M. Kastaniotis, Alexander J. Dieckmann, Carol L. |
description | Eukaryotes harbor a highly conserved mitochondrial pathway for fatty acid synthesis (FAS), which is completely independent of the eukaryotic cytosolic FAS apparatus. The activities of the mitochondrial FAS system are catalyzed by soluble enzymes, and the pathway thus resembles its prokaryotic counterparts. Except for octanoic acid, which is the direct precursor for lipoic acid synthesis, other end products and functions of the mitochondrial FAS pathway are still largely enigmatic. In addition to low cellular levels of lipoic acid, disruption of genes encoding mitochondrial FAS enzymes in yeast results in a respiratory-deficient phenotype and small rudimentary mitochondria. Recently, two distinct links between mitochondrial FAS and RNA processing have been discovered in vertebrates and yeast, respectively. In vertebrates, the mitochondrial 3-hydroxyacyl-acyl carrier protein dehydratase and the RPP14 subunit of RNase P are encoded by the same bicistronic transcript in an evolutionarily conserved arrangement that is unusual for eukaryotes. In yeast, defects in mitochondrial FAS result in inefficient RNase P cleavage in the organelle. The intersection of mitochondrial FAS and RNA metabolism in both systems provides a novel mechanism for the coordination of intermediary metabolism in eukaryotic cells. |
doi_str_mv | 10.1074/jbc.R800068200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2666548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820322948</els_id><sourcerecordid>67084172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-a88815854de1559ebbd9d1a22d0f90bc79da908731adaeea00172dcd59b4d7a33</originalsourceid><addsrcrecordid>eNp10E1vEzEQBmALgWgoXDnCSkjcNsx4v2wOSFVFIKgVEm0lbpbXnmRdJetgO0X597jaiJYDJx_8zDujl7HXCHOErv5w25v5DwEAreAAT9gMQVRl1eDPp2wGwLGUvBEn7EWMt1lBLfE5O0EJXLRCzNji0iVvBj_a4PSmWOiUDsWZcba4OoxpoOhicX3YUbFcfiwufaAiDXosvu1jeoTjS_ZspTeRXh3fU3az-Hx9_rW8-P5leX52UZoWIJVaCIGNaGpL2DSS-t5Ki5pzCysJvemk1RJEV6G2mkgDYMetsY3sa9vpqjpln6bc3b7fkjU0pqA3ahfcVoeD8tqpf39GN6i1v1O8bdumFjng_TEg-F97ikltXTS02eiR_D6qtgNR56UZzidogo8x0OrvEgR1X73K1auH6vPAm8enPfBj1xm8m8Dg1sNvF0j1LldPW8VFrbBWEhCzejuplfZKr4OL6uaKA1aALYIU90JMgnLRd46CisbRaMjmTJOU9e5_N_4BFD6nUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67084172</pqid></control><display><type>article</type><title>Mitochondrial Fatty Acid Synthesis Type II: More than Just Fatty Acids</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hiltunen, J.Kalervo ; Schonauer, Melissa S. ; Autio, Kaija J. ; Mittelmeier, Telsa M. ; Kastaniotis, Alexander J. ; Dieckmann, Carol L.</creator><creatorcontrib>Hiltunen, J.Kalervo ; Schonauer, Melissa S. ; Autio, Kaija J. ; Mittelmeier, Telsa M. ; Kastaniotis, Alexander J. ; Dieckmann, Carol L.</creatorcontrib><description>Eukaryotes harbor a highly conserved mitochondrial pathway for fatty acid synthesis (FAS), which is completely independent of the eukaryotic cytosolic FAS apparatus. The activities of the mitochondrial FAS system are catalyzed by soluble enzymes, and the pathway thus resembles its prokaryotic counterparts. Except for octanoic acid, which is the direct precursor for lipoic acid synthesis, other end products and functions of the mitochondrial FAS pathway are still largely enigmatic. In addition to low cellular levels of lipoic acid, disruption of genes encoding mitochondrial FAS enzymes in yeast results in a respiratory-deficient phenotype and small rudimentary mitochondria. Recently, two distinct links between mitochondrial FAS and RNA processing have been discovered in vertebrates and yeast, respectively. In vertebrates, the mitochondrial 3-hydroxyacyl-acyl carrier protein dehydratase and the RPP14 subunit of RNase P are encoded by the same bicistronic transcript in an evolutionarily conserved arrangement that is unusual for eukaryotes. In yeast, defects in mitochondrial FAS result in inefficient RNase P cleavage in the organelle. The intersection of mitochondrial FAS and RNA metabolism in both systems provides a novel mechanism for the coordination of intermediary metabolism in eukaryotic cells.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.R800068200</identifier><identifier>PMID: 19028688</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Fatty Acids - biosynthesis ; Genetic Linkage - genetics ; Humans ; Minireviews ; Mitochondria - metabolism ; Ribonuclease P - metabolism ; RNA, Transfer - genetics ; Thioctic Acid - biosynthesis</subject><ispartof>The Journal of biological chemistry, 2009-04, Vol.284 (14), p.9011-9015</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Copyright © 2009, The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-a88815854de1559ebbd9d1a22d0f90bc79da908731adaeea00172dcd59b4d7a33</citedby><cites>FETCH-LOGICAL-c600t-a88815854de1559ebbd9d1a22d0f90bc79da908731adaeea00172dcd59b4d7a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666548/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666548/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19028688$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hiltunen, J.Kalervo</creatorcontrib><creatorcontrib>Schonauer, Melissa S.</creatorcontrib><creatorcontrib>Autio, Kaija J.</creatorcontrib><creatorcontrib>Mittelmeier, Telsa M.</creatorcontrib><creatorcontrib>Kastaniotis, Alexander J.</creatorcontrib><creatorcontrib>Dieckmann, Carol L.</creatorcontrib><title>Mitochondrial Fatty Acid Synthesis Type II: More than Just Fatty Acids</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Eukaryotes harbor a highly conserved mitochondrial pathway for fatty acid synthesis (FAS), which is completely independent of the eukaryotic cytosolic FAS apparatus. The activities of the mitochondrial FAS system are catalyzed by soluble enzymes, and the pathway thus resembles its prokaryotic counterparts. Except for octanoic acid, which is the direct precursor for lipoic acid synthesis, other end products and functions of the mitochondrial FAS pathway are still largely enigmatic. In addition to low cellular levels of lipoic acid, disruption of genes encoding mitochondrial FAS enzymes in yeast results in a respiratory-deficient phenotype and small rudimentary mitochondria. Recently, two distinct links between mitochondrial FAS and RNA processing have been discovered in vertebrates and yeast, respectively. In vertebrates, the mitochondrial 3-hydroxyacyl-acyl carrier protein dehydratase and the RPP14 subunit of RNase P are encoded by the same bicistronic transcript in an evolutionarily conserved arrangement that is unusual for eukaryotes. In yeast, defects in mitochondrial FAS result in inefficient RNase P cleavage in the organelle. The intersection of mitochondrial FAS and RNA metabolism in both systems provides a novel mechanism for the coordination of intermediary metabolism in eukaryotic cells.</description><subject>Animals</subject><subject>Fatty Acids - biosynthesis</subject><subject>Genetic Linkage - genetics</subject><subject>Humans</subject><subject>Minireviews</subject><subject>Mitochondria - metabolism</subject><subject>Ribonuclease P - metabolism</subject><subject>RNA, Transfer - genetics</subject><subject>Thioctic Acid - biosynthesis</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1vEzEQBmALgWgoXDnCSkjcNsx4v2wOSFVFIKgVEm0lbpbXnmRdJetgO0X597jaiJYDJx_8zDujl7HXCHOErv5w25v5DwEAreAAT9gMQVRl1eDPp2wGwLGUvBEn7EWMt1lBLfE5O0EJXLRCzNji0iVvBj_a4PSmWOiUDsWZcba4OoxpoOhicX3YUbFcfiwufaAiDXosvu1jeoTjS_ZspTeRXh3fU3az-Hx9_rW8-P5leX52UZoWIJVaCIGNaGpL2DSS-t5Ki5pzCysJvemk1RJEV6G2mkgDYMetsY3sa9vpqjpln6bc3b7fkjU0pqA3ahfcVoeD8tqpf39GN6i1v1O8bdumFjng_TEg-F97ikltXTS02eiR_D6qtgNR56UZzidogo8x0OrvEgR1X73K1auH6vPAm8enPfBj1xm8m8Dg1sNvF0j1LldPW8VFrbBWEhCzejuplfZKr4OL6uaKA1aALYIU90JMgnLRd46CisbRaMjmTJOU9e5_N_4BFD6nUw</recordid><startdate>20090403</startdate><enddate>20090403</enddate><creator>Hiltunen, J.Kalervo</creator><creator>Schonauer, Melissa S.</creator><creator>Autio, Kaija J.</creator><creator>Mittelmeier, Telsa M.</creator><creator>Kastaniotis, Alexander J.</creator><creator>Dieckmann, Carol L.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090403</creationdate><title>Mitochondrial Fatty Acid Synthesis Type II: More than Just Fatty Acids</title><author>Hiltunen, J.Kalervo ; Schonauer, Melissa S. ; Autio, Kaija J. ; Mittelmeier, Telsa M. ; Kastaniotis, Alexander J. ; Dieckmann, Carol L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-a88815854de1559ebbd9d1a22d0f90bc79da908731adaeea00172dcd59b4d7a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Fatty Acids - biosynthesis</topic><topic>Genetic Linkage - genetics</topic><topic>Humans</topic><topic>Minireviews</topic><topic>Mitochondria - metabolism</topic><topic>Ribonuclease P - metabolism</topic><topic>RNA, Transfer - genetics</topic><topic>Thioctic Acid - biosynthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiltunen, J.Kalervo</creatorcontrib><creatorcontrib>Schonauer, Melissa S.</creatorcontrib><creatorcontrib>Autio, Kaija J.</creatorcontrib><creatorcontrib>Mittelmeier, Telsa M.</creatorcontrib><creatorcontrib>Kastaniotis, Alexander J.</creatorcontrib><creatorcontrib>Dieckmann, Carol L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiltunen, J.Kalervo</au><au>Schonauer, Melissa S.</au><au>Autio, Kaija J.</au><au>Mittelmeier, Telsa M.</au><au>Kastaniotis, Alexander J.</au><au>Dieckmann, Carol L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Fatty Acid Synthesis Type II: More than Just Fatty Acids</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-04-03</date><risdate>2009</risdate><volume>284</volume><issue>14</issue><spage>9011</spage><epage>9015</epage><pages>9011-9015</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Eukaryotes harbor a highly conserved mitochondrial pathway for fatty acid synthesis (FAS), which is completely independent of the eukaryotic cytosolic FAS apparatus. The activities of the mitochondrial FAS system are catalyzed by soluble enzymes, and the pathway thus resembles its prokaryotic counterparts. Except for octanoic acid, which is the direct precursor for lipoic acid synthesis, other end products and functions of the mitochondrial FAS pathway are still largely enigmatic. In addition to low cellular levels of lipoic acid, disruption of genes encoding mitochondrial FAS enzymes in yeast results in a respiratory-deficient phenotype and small rudimentary mitochondria. Recently, two distinct links between mitochondrial FAS and RNA processing have been discovered in vertebrates and yeast, respectively. In vertebrates, the mitochondrial 3-hydroxyacyl-acyl carrier protein dehydratase and the RPP14 subunit of RNase P are encoded by the same bicistronic transcript in an evolutionarily conserved arrangement that is unusual for eukaryotes. In yeast, defects in mitochondrial FAS result in inefficient RNase P cleavage in the organelle. The intersection of mitochondrial FAS and RNA metabolism in both systems provides a novel mechanism for the coordination of intermediary metabolism in eukaryotic cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19028688</pmid><doi>10.1074/jbc.R800068200</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2009-04, Vol.284 (14), p.9011-9015 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2666548 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Fatty Acids - biosynthesis Genetic Linkage - genetics Humans Minireviews Mitochondria - metabolism Ribonuclease P - metabolism RNA, Transfer - genetics Thioctic Acid - biosynthesis |
title | Mitochondrial Fatty Acid Synthesis Type II: More than Just Fatty Acids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Fatty%20Acid%20Synthesis%20Type%20II:%20More%20than%20Just%20Fatty%20Acids&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Hiltunen,%20J.Kalervo&rft.date=2009-04-03&rft.volume=284&rft.issue=14&rft.spage=9011&rft.epage=9015&rft.pages=9011-9015&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.R800068200&rft_dat=%3Cproquest_pubme%3E67084172%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67084172&rft_id=info:pmid/19028688&rft_els_id=S0021925820322948&rfr_iscdi=true |