Elaboration, diversification and regulation of the Sir1 family of silencing proteins in Saccharomyces
Heterochromatin renders domains of chromosomes transcriptionally silent and, due to clonal variation in its formation, can generate heritably distinct populations of genetically identical cells. Saccharomyces cerevisiae's Sir1 functions primarily in the establishment, but not the maintenance, o...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2009-04, Vol.181 (4), p.1477-1491 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1491 |
---|---|
container_issue | 4 |
container_start_page | 1477 |
container_title | Genetics (Austin) |
container_volume | 181 |
creator | Gallagher, Jennifer E.G Babiarz, Joshua E Teytelman, Leonid Wolfe, Kenneth H Rine, Jasper |
description | Heterochromatin renders domains of chromosomes transcriptionally silent and, due to clonal variation in its formation, can generate heritably distinct populations of genetically identical cells. Saccharomyces cerevisiae's Sir1 functions primarily in the establishment, but not the maintenance, of heterochromatic silencing at the HMR and HML loci. In several Saccharomyces species, we discovered multiple paralogs of Sir1, called Kos1-Kos4 (Kin of Sir1). The Kos and Sir1 proteins contributed partially overlapping functions to silencing of both cryptic mating loci in S. bayanus. Mutants of these paralogs reduced silencing at HML more than at HMR. Most genes of the SIR1 family were located near telomeres, and at least one paralog was regulated by telomere position effect. In S. cerevisiae, Sir1 is recruited to the silencers at HML and HMR via its ORC interacting region (OIR), which binds the bromo adjacent homology (BAH) domain of Orc1. Zygosaccharomyces rouxii, which diverged from Saccharomyces after the appearance of the silent mating cassettes, but before the whole-genome duplication, contained an ortholog of Kos3 that was apparently the archetypal member of the family, with only one OIR. In contrast, a duplication of this domain was present in all orthologs of Sir1, Kos1, Kos2, and Kos4. We propose that the functional specialization of Sir3, itself a paralog of Orc1, as a silencing protein was facilitated by the tandem duplication of the OIR domain in the Sir1 family, allowing distinct Sir1-Sir3 and Sir1-Orc1 interactions through OIR-BAH domain interactions. |
doi_str_mv | 10.1534/genetics.108.099663 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2666514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1691969381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-a19ec73eb43bdbb5fe9824c0d40be44220e13569b690a9e89f1e1db3f82a646a3</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhSMEotPCL0CCiEXZkME3dpx4g4Sq8pAqsRi6thznJnHl2IOddDT_HpcMz5Xl4-8e3eOTZS-AbKGi7N2ADmej4xZIsyVCcE4fZRsQjBYlp_A42xACvOA1hbPsPMY7QggXVfM0OwMBNQgqNhleW9X6oGbj3du8M_cYoumN_inkynV5wGGx69X3-TxivjMB8l5Nxh4fpGgsOm3ckO-Dn9G4mBuX75TWowp-OmqMz7InvbIRn5_Oi-z24_W3q8_FzddPX64-3BSaNXwuFAjUNcWW0bZr26pH0ZRMk46RFhkrS4JAKy5aLogS2IgeELqW9k2pOOOKXmTvV9_90k7YaXRzUFbug5lUOEqvjPz3xZlRDv5elpzzClgyuDwZBP99wTjLyUSN1iqHfomS1-mzgTcJfP0feOeX4FI4WQIDSppSJIiukA4-xoD9702AyIcO5a8Ok9DItcM09fLvEH9mTqUl4M0KjGYYDyagjJOyNuEgD4cDNCCZBFbXiXy1kr3yUg3BRHm7K0laD1ISykv6A28nsyM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214130829</pqid></control><display><type>article</type><title>Elaboration, diversification and regulation of the Sir1 family of silencing proteins in Saccharomyces</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Gallagher, Jennifer E.G ; Babiarz, Joshua E ; Teytelman, Leonid ; Wolfe, Kenneth H ; Rine, Jasper</creator><creatorcontrib>Gallagher, Jennifer E.G ; Babiarz, Joshua E ; Teytelman, Leonid ; Wolfe, Kenneth H ; Rine, Jasper</creatorcontrib><description>Heterochromatin renders domains of chromosomes transcriptionally silent and, due to clonal variation in its formation, can generate heritably distinct populations of genetically identical cells. Saccharomyces cerevisiae's Sir1 functions primarily in the establishment, but not the maintenance, of heterochromatic silencing at the HMR and HML loci. In several Saccharomyces species, we discovered multiple paralogs of Sir1, called Kos1-Kos4 (Kin of Sir1). The Kos and Sir1 proteins contributed partially overlapping functions to silencing of both cryptic mating loci in S. bayanus. Mutants of these paralogs reduced silencing at HML more than at HMR. Most genes of the SIR1 family were located near telomeres, and at least one paralog was regulated by telomere position effect. In S. cerevisiae, Sir1 is recruited to the silencers at HML and HMR via its ORC interacting region (OIR), which binds the bromo adjacent homology (BAH) domain of Orc1. Zygosaccharomyces rouxii, which diverged from Saccharomyces after the appearance of the silent mating cassettes, but before the whole-genome duplication, contained an ortholog of Kos3 that was apparently the archetypal member of the family, with only one OIR. In contrast, a duplication of this domain was present in all orthologs of Sir1, Kos1, Kos2, and Kos4. We propose that the functional specialization of Sir3, itself a paralog of Orc1, as a silencing protein was facilitated by the tandem duplication of the OIR domain in the Sir1 family, allowing distinct Sir1-Sir3 and Sir1-Orc1 interactions through OIR-BAH domain interactions.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.108.099663</identifier><identifier>PMID: 19171939</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>Amino Acid Sequence ; Binding sites ; Cells ; DNA-binding proteins ; Environmental conditions ; gene expression ; Gene Expression Regulation, Fungal ; Gene Silencing ; genes ; Genetic Complementation Test ; Genetic Variation - physiology ; Genetics ; heterochromatin ; Investigations ; Models, Biological ; Molecular Sequence Data ; Origin Recognition Complex - chemistry ; Origin Recognition Complex - genetics ; Origin Recognition Complex - metabolism ; Origin Recognition Complex - physiology ; Phylogeny ; Protein Binding ; Protein Structure, Tertiary - physiology ; Proteins ; Saccharomyces ; Saccharomyces bayanus ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Saccharomyces cerevisiae Proteins - physiology ; Sequence Homology, Amino Acid ; silencing proteins ; Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics ; Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism ; SIR1 gene ; Sir1 proteins ; Two-Hybrid System Techniques ; Yeast ; yeasts</subject><ispartof>Genetics (Austin), 2009-04, Vol.181 (4), p.1477-1491</ispartof><rights>Copyright Genetics Society of America Apr 2009</rights><rights>Copyright © 2009 by the Genetics Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-a19ec73eb43bdbb5fe9824c0d40be44220e13569b690a9e89f1e1db3f82a646a3</citedby><cites>FETCH-LOGICAL-c486t-a19ec73eb43bdbb5fe9824c0d40be44220e13569b690a9e89f1e1db3f82a646a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19171939$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallagher, Jennifer E.G</creatorcontrib><creatorcontrib>Babiarz, Joshua E</creatorcontrib><creatorcontrib>Teytelman, Leonid</creatorcontrib><creatorcontrib>Wolfe, Kenneth H</creatorcontrib><creatorcontrib>Rine, Jasper</creatorcontrib><title>Elaboration, diversification and regulation of the Sir1 family of silencing proteins in Saccharomyces</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Heterochromatin renders domains of chromosomes transcriptionally silent and, due to clonal variation in its formation, can generate heritably distinct populations of genetically identical cells. Saccharomyces cerevisiae's Sir1 functions primarily in the establishment, but not the maintenance, of heterochromatic silencing at the HMR and HML loci. In several Saccharomyces species, we discovered multiple paralogs of Sir1, called Kos1-Kos4 (Kin of Sir1). The Kos and Sir1 proteins contributed partially overlapping functions to silencing of both cryptic mating loci in S. bayanus. Mutants of these paralogs reduced silencing at HML more than at HMR. Most genes of the SIR1 family were located near telomeres, and at least one paralog was regulated by telomere position effect. In S. cerevisiae, Sir1 is recruited to the silencers at HML and HMR via its ORC interacting region (OIR), which binds the bromo adjacent homology (BAH) domain of Orc1. Zygosaccharomyces rouxii, which diverged from Saccharomyces after the appearance of the silent mating cassettes, but before the whole-genome duplication, contained an ortholog of Kos3 that was apparently the archetypal member of the family, with only one OIR. In contrast, a duplication of this domain was present in all orthologs of Sir1, Kos1, Kos2, and Kos4. We propose that the functional specialization of Sir3, itself a paralog of Orc1, as a silencing protein was facilitated by the tandem duplication of the OIR domain in the Sir1 family, allowing distinct Sir1-Sir3 and Sir1-Orc1 interactions through OIR-BAH domain interactions.</description><subject>Amino Acid Sequence</subject><subject>Binding sites</subject><subject>Cells</subject><subject>DNA-binding proteins</subject><subject>Environmental conditions</subject><subject>gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene Silencing</subject><subject>genes</subject><subject>Genetic Complementation Test</subject><subject>Genetic Variation - physiology</subject><subject>Genetics</subject><subject>heterochromatin</subject><subject>Investigations</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Origin Recognition Complex - chemistry</subject><subject>Origin Recognition Complex - genetics</subject><subject>Origin Recognition Complex - metabolism</subject><subject>Origin Recognition Complex - physiology</subject><subject>Phylogeny</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Proteins</subject><subject>Saccharomyces</subject><subject>Saccharomyces bayanus</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Sequence Homology, Amino Acid</subject><subject>silencing proteins</subject><subject>Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics</subject><subject>Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism</subject><subject>SIR1 gene</subject><subject>Sir1 proteins</subject><subject>Two-Hybrid System Techniques</subject><subject>Yeast</subject><subject>yeasts</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUtv1DAUhSMEotPCL0CCiEXZkME3dpx4g4Sq8pAqsRi6thznJnHl2IOddDT_HpcMz5Xl4-8e3eOTZS-AbKGi7N2ADmej4xZIsyVCcE4fZRsQjBYlp_A42xACvOA1hbPsPMY7QggXVfM0OwMBNQgqNhleW9X6oGbj3du8M_cYoumN_inkynV5wGGx69X3-TxivjMB8l5Nxh4fpGgsOm3ckO-Dn9G4mBuX75TWowp-OmqMz7InvbIRn5_Oi-z24_W3q8_FzddPX64-3BSaNXwuFAjUNcWW0bZr26pH0ZRMk46RFhkrS4JAKy5aLogS2IgeELqW9k2pOOOKXmTvV9_90k7YaXRzUFbug5lUOEqvjPz3xZlRDv5elpzzClgyuDwZBP99wTjLyUSN1iqHfomS1-mzgTcJfP0feOeX4FI4WQIDSppSJIiukA4-xoD9702AyIcO5a8Ok9DItcM09fLvEH9mTqUl4M0KjGYYDyagjJOyNuEgD4cDNCCZBFbXiXy1kr3yUg3BRHm7K0laD1ISykv6A28nsyM</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Gallagher, Jennifer E.G</creator><creator>Babiarz, Joshua E</creator><creator>Teytelman, Leonid</creator><creator>Wolfe, Kenneth H</creator><creator>Rine, Jasper</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090401</creationdate><title>Elaboration, diversification and regulation of the Sir1 family of silencing proteins in Saccharomyces</title><author>Gallagher, Jennifer E.G ; Babiarz, Joshua E ; Teytelman, Leonid ; Wolfe, Kenneth H ; Rine, Jasper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-a19ec73eb43bdbb5fe9824c0d40be44220e13569b690a9e89f1e1db3f82a646a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Binding sites</topic><topic>Cells</topic><topic>DNA-binding proteins</topic><topic>Environmental conditions</topic><topic>gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene Silencing</topic><topic>genes</topic><topic>Genetic Complementation Test</topic><topic>Genetic Variation - physiology</topic><topic>Genetics</topic><topic>heterochromatin</topic><topic>Investigations</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Origin Recognition Complex - chemistry</topic><topic>Origin Recognition Complex - genetics</topic><topic>Origin Recognition Complex - metabolism</topic><topic>Origin Recognition Complex - physiology</topic><topic>Phylogeny</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Proteins</topic><topic>Saccharomyces</topic><topic>Saccharomyces bayanus</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Sequence Homology, Amino Acid</topic><topic>silencing proteins</topic><topic>Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics</topic><topic>Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism</topic><topic>SIR1 gene</topic><topic>Sir1 proteins</topic><topic>Two-Hybrid System Techniques</topic><topic>Yeast</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallagher, Jennifer E.G</creatorcontrib><creatorcontrib>Babiarz, Joshua E</creatorcontrib><creatorcontrib>Teytelman, Leonid</creatorcontrib><creatorcontrib>Wolfe, Kenneth H</creatorcontrib><creatorcontrib>Rine, Jasper</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallagher, Jennifer E.G</au><au>Babiarz, Joshua E</au><au>Teytelman, Leonid</au><au>Wolfe, Kenneth H</au><au>Rine, Jasper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elaboration, diversification and regulation of the Sir1 family of silencing proteins in Saccharomyces</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>181</volume><issue>4</issue><spage>1477</spage><epage>1491</epage><pages>1477-1491</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Heterochromatin renders domains of chromosomes transcriptionally silent and, due to clonal variation in its formation, can generate heritably distinct populations of genetically identical cells. Saccharomyces cerevisiae's Sir1 functions primarily in the establishment, but not the maintenance, of heterochromatic silencing at the HMR and HML loci. In several Saccharomyces species, we discovered multiple paralogs of Sir1, called Kos1-Kos4 (Kin of Sir1). The Kos and Sir1 proteins contributed partially overlapping functions to silencing of both cryptic mating loci in S. bayanus. Mutants of these paralogs reduced silencing at HML more than at HMR. Most genes of the SIR1 family were located near telomeres, and at least one paralog was regulated by telomere position effect. In S. cerevisiae, Sir1 is recruited to the silencers at HML and HMR via its ORC interacting region (OIR), which binds the bromo adjacent homology (BAH) domain of Orc1. Zygosaccharomyces rouxii, which diverged from Saccharomyces after the appearance of the silent mating cassettes, but before the whole-genome duplication, contained an ortholog of Kos3 that was apparently the archetypal member of the family, with only one OIR. In contrast, a duplication of this domain was present in all orthologs of Sir1, Kos1, Kos2, and Kos4. We propose that the functional specialization of Sir3, itself a paralog of Orc1, as a silencing protein was facilitated by the tandem duplication of the OIR domain in the Sir1 family, allowing distinct Sir1-Sir3 and Sir1-Orc1 interactions through OIR-BAH domain interactions.</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>19171939</pmid><doi>10.1534/genetics.108.099663</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-6731 |
ispartof | Genetics (Austin), 2009-04, Vol.181 (4), p.1477-1491 |
issn | 0016-6731 1943-2631 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2666514 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Amino Acid Sequence Binding sites Cells DNA-binding proteins Environmental conditions gene expression Gene Expression Regulation, Fungal Gene Silencing genes Genetic Complementation Test Genetic Variation - physiology Genetics heterochromatin Investigations Models, Biological Molecular Sequence Data Origin Recognition Complex - chemistry Origin Recognition Complex - genetics Origin Recognition Complex - metabolism Origin Recognition Complex - physiology Phylogeny Protein Binding Protein Structure, Tertiary - physiology Proteins Saccharomyces Saccharomyces bayanus Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Saccharomyces cerevisiae Proteins - physiology Sequence Homology, Amino Acid silencing proteins Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism SIR1 gene Sir1 proteins Two-Hybrid System Techniques Yeast yeasts |
title | Elaboration, diversification and regulation of the Sir1 family of silencing proteins in Saccharomyces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elaboration,%20diversification%20and%20regulation%20of%20the%20Sir1%20family%20of%20silencing%20proteins%20in%20Saccharomyces&rft.jtitle=Genetics%20(Austin)&rft.au=Gallagher,%20Jennifer%20E.G&rft.date=2009-04-01&rft.volume=181&rft.issue=4&rft.spage=1477&rft.epage=1491&rft.pages=1477-1491&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.108.099663&rft_dat=%3Cproquest_pubme%3E1691969381%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214130829&rft_id=info:pmid/19171939&rfr_iscdi=true |