Reduced Eukaryotic Initiation Factor 2Bε-Subunit Expression Suppresses the Transformed Phenotype of Cells Overexpressing the Protein

Eukaryotic initiation factor 2B (eIF2B), a five-subunit guanine nucleotide exchange factor, plays a key role in the regulation of mRNA translation. Expression of its ε-subunit is specifically up-regulated in certain conditions associated with increased cell growth. Therefore, the purpose of the pres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2008-11, Vol.68 (21), p.8752-8760
Hauptverfasser: Gallagher, James W., Kubica, Neil, Kimball, Scot R., Jefferson, Leonard S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8760
container_issue 21
container_start_page 8752
container_title Cancer research (Chicago, Ill.)
container_volume 68
creator Gallagher, James W.
Kubica, Neil
Kimball, Scot R.
Jefferson, Leonard S.
description Eukaryotic initiation factor 2B (eIF2B), a five-subunit guanine nucleotide exchange factor, plays a key role in the regulation of mRNA translation. Expression of its ε-subunit is specifically up-regulated in certain conditions associated with increased cell growth. Therefore, the purpose of the present study was to examine the effect of repressing eIF2Bε expression on growth rate, protein synthesis, and other characteristics of two tumorigenic cell lines that display up-regulated expression of the ε-subunit. Experiments were designed to compare spontaneously transformed fibroblasts to transformed mouse embryonic fibroblasts infected with a lentivirus containing a short hairpin RNA directed against eIF2Bε. Cells expressing the short hairpin RNA displayed a reduction in eIF2Bε abundance to 30% of the value observed in uninfected transformed mouse embryonic fibroblasts, with no change in the expression of any of the other four subunits. The repression of eIF2Bε expression was accompanied by reductions in guanine nucleotide exchange factor activity and global rates of protein synthesis. Moreover, repressed eIF2Bε expression led to marked reductions in cell growth rate in culture, colony formation in soft agar, and tumor progression in nude mice. Similar results were obtained in MCF-7 human breast cancer cells in which eIF2Bε expression was repressed through transient transfection with a small interfering RNA directed against the ε-subunit. Overall, the results support a role for eIF2Bε in the regulation of cell growth and suggest that it might represent a therapeutic target for the treatment of human cancer. [Cancer Res 2008;68(21):8752–60]
doi_str_mv 10.1158/0008-5472.CAN-08-1042
format Article
fullrecord <record><control><sourceid>pubmedcentral_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2664734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_2664734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-a9b714cf8747cc2fe3185b928aa3868cb336e3b91efea38d4398fe1285feb6f83</originalsourceid><addsrcrecordid>eNpVUUtOwzAUtBCIls8RkHyBQBzbibNBKlULSBWt-Kwtx32mgTaObKeCA3AkrsGZcChCYvXmeTwjewahM5KeE8LFRZqmIuGsyM7Ho7skYpKybA8NCaciKRjj-2j4d2eAjrx_iSsnKT9EAyLKghFSDNHHPSw7DUs86V6Ve7eh1vi2qUOtQm0bPFU6WIezq6_P5KGrusjgyVvrwPuefujaHwwehxXgR6cab6zbRL_FChob3lvA1uAxrNcez7fg4FfcPP8oFs4GqJsTdGDU2sPp7zxGT9PJ4_gmmc2vb8ejWaIp5yFRZVUQpo0oWKF1ZoASwasyE0pRkQtdUZoDrUoCBuLJktFSGCCZ4Aaq3Ah6jC53vm1XxUdqaIJTa9m6ehM_L62q5X-mqVfy2W5lluesoCwa8J2BdtZ7B-ZPS1LZ9yL7zGWfuYy9yIj7Xug33DKFRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reduced Eukaryotic Initiation Factor 2Bε-Subunit Expression Suppresses the Transformed Phenotype of Cells Overexpressing the Protein</title><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gallagher, James W. ; Kubica, Neil ; Kimball, Scot R. ; Jefferson, Leonard S.</creator><creatorcontrib>Gallagher, James W. ; Kubica, Neil ; Kimball, Scot R. ; Jefferson, Leonard S.</creatorcontrib><description>Eukaryotic initiation factor 2B (eIF2B), a five-subunit guanine nucleotide exchange factor, plays a key role in the regulation of mRNA translation. Expression of its ε-subunit is specifically up-regulated in certain conditions associated with increased cell growth. Therefore, the purpose of the present study was to examine the effect of repressing eIF2Bε expression on growth rate, protein synthesis, and other characteristics of two tumorigenic cell lines that display up-regulated expression of the ε-subunit. Experiments were designed to compare spontaneously transformed fibroblasts to transformed mouse embryonic fibroblasts infected with a lentivirus containing a short hairpin RNA directed against eIF2Bε. Cells expressing the short hairpin RNA displayed a reduction in eIF2Bε abundance to 30% of the value observed in uninfected transformed mouse embryonic fibroblasts, with no change in the expression of any of the other four subunits. The repression of eIF2Bε expression was accompanied by reductions in guanine nucleotide exchange factor activity and global rates of protein synthesis. Moreover, repressed eIF2Bε expression led to marked reductions in cell growth rate in culture, colony formation in soft agar, and tumor progression in nude mice. Similar results were obtained in MCF-7 human breast cancer cells in which eIF2Bε expression was repressed through transient transfection with a small interfering RNA directed against the ε-subunit. Overall, the results support a role for eIF2Bε in the regulation of cell growth and suggest that it might represent a therapeutic target for the treatment of human cancer. [Cancer Res 2008;68(21):8752–60]</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.CAN-08-1042</identifier><identifier>PMID: 18974117</identifier><language>eng</language><ispartof>Cancer research (Chicago, Ill.), 2008-11, Vol.68 (21), p.8752-8760</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-a9b714cf8747cc2fe3185b928aa3868cb336e3b91efea38d4398fe1285feb6f83</citedby><cites>FETCH-LOGICAL-c355t-a9b714cf8747cc2fe3185b928aa3868cb336e3b91efea38d4398fe1285feb6f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3356,27924,27925</link.rule.ids></links><search><creatorcontrib>Gallagher, James W.</creatorcontrib><creatorcontrib>Kubica, Neil</creatorcontrib><creatorcontrib>Kimball, Scot R.</creatorcontrib><creatorcontrib>Jefferson, Leonard S.</creatorcontrib><title>Reduced Eukaryotic Initiation Factor 2Bε-Subunit Expression Suppresses the Transformed Phenotype of Cells Overexpressing the Protein</title><title>Cancer research (Chicago, Ill.)</title><description>Eukaryotic initiation factor 2B (eIF2B), a five-subunit guanine nucleotide exchange factor, plays a key role in the regulation of mRNA translation. Expression of its ε-subunit is specifically up-regulated in certain conditions associated with increased cell growth. Therefore, the purpose of the present study was to examine the effect of repressing eIF2Bε expression on growth rate, protein synthesis, and other characteristics of two tumorigenic cell lines that display up-regulated expression of the ε-subunit. Experiments were designed to compare spontaneously transformed fibroblasts to transformed mouse embryonic fibroblasts infected with a lentivirus containing a short hairpin RNA directed against eIF2Bε. Cells expressing the short hairpin RNA displayed a reduction in eIF2Bε abundance to 30% of the value observed in uninfected transformed mouse embryonic fibroblasts, with no change in the expression of any of the other four subunits. The repression of eIF2Bε expression was accompanied by reductions in guanine nucleotide exchange factor activity and global rates of protein synthesis. Moreover, repressed eIF2Bε expression led to marked reductions in cell growth rate in culture, colony formation in soft agar, and tumor progression in nude mice. Similar results were obtained in MCF-7 human breast cancer cells in which eIF2Bε expression was repressed through transient transfection with a small interfering RNA directed against the ε-subunit. Overall, the results support a role for eIF2Bε in the regulation of cell growth and suggest that it might represent a therapeutic target for the treatment of human cancer. [Cancer Res 2008;68(21):8752–60]</description><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpVUUtOwzAUtBCIls8RkHyBQBzbibNBKlULSBWt-Kwtx32mgTaObKeCA3AkrsGZcChCYvXmeTwjewahM5KeE8LFRZqmIuGsyM7Ho7skYpKybA8NCaciKRjj-2j4d2eAjrx_iSsnKT9EAyLKghFSDNHHPSw7DUs86V6Ve7eh1vi2qUOtQm0bPFU6WIezq6_P5KGrusjgyVvrwPuefujaHwwehxXgR6cab6zbRL_FChob3lvA1uAxrNcez7fg4FfcPP8oFs4GqJsTdGDU2sPp7zxGT9PJ4_gmmc2vb8ejWaIp5yFRZVUQpo0oWKF1ZoASwasyE0pRkQtdUZoDrUoCBuLJktFSGCCZ4Aaq3Ah6jC53vm1XxUdqaIJTa9m6ehM_L62q5X-mqVfy2W5lluesoCwa8J2BdtZ7B-ZPS1LZ9yL7zGWfuYy9yIj7Xug33DKFRw</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Gallagher, James W.</creator><creator>Kubica, Neil</creator><creator>Kimball, Scot R.</creator><creator>Jefferson, Leonard S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20081101</creationdate><title>Reduced Eukaryotic Initiation Factor 2Bε-Subunit Expression Suppresses the Transformed Phenotype of Cells Overexpressing the Protein</title><author>Gallagher, James W. ; Kubica, Neil ; Kimball, Scot R. ; Jefferson, Leonard S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-a9b714cf8747cc2fe3185b928aa3868cb336e3b91efea38d4398fe1285feb6f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallagher, James W.</creatorcontrib><creatorcontrib>Kubica, Neil</creatorcontrib><creatorcontrib>Kimball, Scot R.</creatorcontrib><creatorcontrib>Jefferson, Leonard S.</creatorcontrib><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallagher, James W.</au><au>Kubica, Neil</au><au>Kimball, Scot R.</au><au>Jefferson, Leonard S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced Eukaryotic Initiation Factor 2Bε-Subunit Expression Suppresses the Transformed Phenotype of Cells Overexpressing the Protein</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><date>2008-11-01</date><risdate>2008</risdate><volume>68</volume><issue>21</issue><spage>8752</spage><epage>8760</epage><pages>8752-8760</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><abstract>Eukaryotic initiation factor 2B (eIF2B), a five-subunit guanine nucleotide exchange factor, plays a key role in the regulation of mRNA translation. Expression of its ε-subunit is specifically up-regulated in certain conditions associated with increased cell growth. Therefore, the purpose of the present study was to examine the effect of repressing eIF2Bε expression on growth rate, protein synthesis, and other characteristics of two tumorigenic cell lines that display up-regulated expression of the ε-subunit. Experiments were designed to compare spontaneously transformed fibroblasts to transformed mouse embryonic fibroblasts infected with a lentivirus containing a short hairpin RNA directed against eIF2Bε. Cells expressing the short hairpin RNA displayed a reduction in eIF2Bε abundance to 30% of the value observed in uninfected transformed mouse embryonic fibroblasts, with no change in the expression of any of the other four subunits. The repression of eIF2Bε expression was accompanied by reductions in guanine nucleotide exchange factor activity and global rates of protein synthesis. Moreover, repressed eIF2Bε expression led to marked reductions in cell growth rate in culture, colony formation in soft agar, and tumor progression in nude mice. Similar results were obtained in MCF-7 human breast cancer cells in which eIF2Bε expression was repressed through transient transfection with a small interfering RNA directed against the ε-subunit. Overall, the results support a role for eIF2Bε in the regulation of cell growth and suggest that it might represent a therapeutic target for the treatment of human cancer. [Cancer Res 2008;68(21):8752–60]</abstract><pmid>18974117</pmid><doi>10.1158/0008-5472.CAN-08-1042</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-5472
ispartof Cancer research (Chicago, Ill.), 2008-11, Vol.68 (21), p.8752-8760
issn 0008-5472
1538-7445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2664734
source American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals
title Reduced Eukaryotic Initiation Factor 2Bε-Subunit Expression Suppresses the Transformed Phenotype of Cells Overexpressing the Protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20Eukaryotic%20Initiation%20Factor%202B%CE%B5-Subunit%20Expression%20Suppresses%20the%20Transformed%20Phenotype%20of%20Cells%20Overexpressing%20the%20Protein&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Gallagher,%20James%20W.&rft.date=2008-11-01&rft.volume=68&rft.issue=21&rft.spage=8752&rft.epage=8760&rft.pages=8752-8760&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.CAN-08-1042&rft_dat=%3Cpubmedcentral_cross%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_2664734%3C/pubmedcentral_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18974117&rfr_iscdi=true