Pulling a Single Chromatin Fiber Reveals the Forces That Maintain Its Higher-Order Structure

Single chicken erythrocyte chromatin fibers were stretched and released at room temperature with force-measuring laser tweezers. In low ionic strength, the stretch-release curves reveal a process of continuous deformation with little or no internucleosomal attraction. A persistence length of 30 nm a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2000-01, Vol.97 (1), p.127-132
Hauptverfasser: Cui, Yujia, Bustamante, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue 1
container_start_page 127
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 97
creator Cui, Yujia
Bustamante, Carlos
description Single chicken erythrocyte chromatin fibers were stretched and released at room temperature with force-measuring laser tweezers. In low ionic strength, the stretch-release curves reveal a process of continuous deformation with little or no internucleosomal attraction. A persistence length of 30 nm and a stretch modulus of ≈ 5 pN is determined for the fibers. At forces of 20 pN and higher, the fibers are modified irreversibly, probably through the mechanical removal of the histone cores from native chromatin. In 40-150 mM NaCl, a distinctive condensation-decondensation transition appears between 5 and 6 pN, corresponding to an internucleosomal attraction energy of ≈ 2.0 kcal/mol per nucleosome. Thus, in physiological ionic strength the fibers possess a dynamic structure in which the fiber locally interconverting between "open" and "closed" states because of thermal fluctuations.
doi_str_mv 10.1073/pnas.97.1.127
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_26627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>121754</jstor_id><sourcerecordid>121754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-657882f591d11226705f28fbf56a3d1f1301daf36399952da3f5ed806d788fc23</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhS0EoqGwZAVCFlLZTfC1xy-JDYoIrdSqiJYdkuXM2JmJJjOp7anaf4_TpLSwgIV1F-c7vo-D0GsgUyCSfdz0Nk61nMIUqHyCJkA0FKLU5CmaEEJloUpaHqAXMa4IIZor8hwdABGgmKIT9PPb2HVtv8QWX-TSOTxrwrC2qe3xvF24gL-7a2e7iFPj8HwIlYv4srEJn9m2T_nhkxTxcbtsXCjOQ50dFymMVRqDe4me-Wx1r_b1EP2Yf7mcHRen519PZp9Pi4oDSYXgUinquYYagFIhCfdU-YXnwrIaPDACtfVMMK01p7VlnrtaEVFnn68oO0Sfdv9uxsXa1ZXrU7Cd2YR2bcOtGWxr_lT6tjHL4dpQIajM9g97exiuRheTWbexcl1nezeM0UiioMz3-i8IsmRKMJ7B93-Bq2EMfb6BoQQyUMK2bbGDqjDEGJz_PTAQs83WbLM1WhowcDfmu8dbPqJ3YWbgaA9sfffyvd_4nHRyNylzb__BZfnNTl7FNISHNhQkL9kvtry_mg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201353417</pqid></control><display><type>article</type><title>Pulling a Single Chromatin Fiber Reveals the Forces That Maintain Its Higher-Order Structure</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cui, Yujia ; Bustamante, Carlos</creator><creatorcontrib>Cui, Yujia ; Bustamante, Carlos</creatorcontrib><description>Single chicken erythrocyte chromatin fibers were stretched and released at room temperature with force-measuring laser tweezers. In low ionic strength, the stretch-release curves reveal a process of continuous deformation with little or no internucleosomal attraction. A persistence length of 30 nm and a stretch modulus of ≈ 5 pN is determined for the fibers. At forces of 20 pN and higher, the fibers are modified irreversibly, probably through the mechanical removal of the histone cores from native chromatin. In 40-150 mM NaCl, a distinctive condensation-decondensation transition appears between 5 and 6 pN, corresponding to an internucleosomal attraction energy of ≈ 2.0 kcal/mol per nucleosome. Thus, in physiological ionic strength the fibers possess a dynamic structure in which the fiber locally interconverting between "open" and "closed" states because of thermal fluctuations.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.97.1.127</identifier><identifier>PMID: 10618382</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Animals ; Biological Sciences ; Chickens ; Chromatin ; Chromatin - chemistry ; Curvature ; Deoxyribonucleic acid ; DNA ; Elastic tissue ; Elasticity ; Erythrocytes ; Erythrocytes - chemistry ; Histones ; Histones - chemistry ; Hysteresis ; Lasers ; Microscopy ; Nucleosomes ; Nucleosomes - chemistry ; Osmolar Concentration ; Physics ; Polystyrenes ; Sodium Chloride - pharmacology ; Stress, Mechanical ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-01, Vol.97 (1), p.127-132</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 4, 2000</rights><rights>Copyright © 2000, The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-657882f591d11226705f28fbf56a3d1f1301daf36399952da3f5ed806d788fc23</citedby><cites>FETCH-LOGICAL-c510t-657882f591d11226705f28fbf56a3d1f1301daf36399952da3f5ed806d788fc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/1.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/121754$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/121754$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10618382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Yujia</creatorcontrib><creatorcontrib>Bustamante, Carlos</creatorcontrib><title>Pulling a Single Chromatin Fiber Reveals the Forces That Maintain Its Higher-Order Structure</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Single chicken erythrocyte chromatin fibers were stretched and released at room temperature with force-measuring laser tweezers. In low ionic strength, the stretch-release curves reveal a process of continuous deformation with little or no internucleosomal attraction. A persistence length of 30 nm and a stretch modulus of ≈ 5 pN is determined for the fibers. At forces of 20 pN and higher, the fibers are modified irreversibly, probably through the mechanical removal of the histone cores from native chromatin. In 40-150 mM NaCl, a distinctive condensation-decondensation transition appears between 5 and 6 pN, corresponding to an internucleosomal attraction energy of ≈ 2.0 kcal/mol per nucleosome. Thus, in physiological ionic strength the fibers possess a dynamic structure in which the fiber locally interconverting between "open" and "closed" states because of thermal fluctuations.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Chickens</subject><subject>Chromatin</subject><subject>Chromatin - chemistry</subject><subject>Curvature</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Elastic tissue</subject><subject>Elasticity</subject><subject>Erythrocytes</subject><subject>Erythrocytes - chemistry</subject><subject>Histones</subject><subject>Histones - chemistry</subject><subject>Hysteresis</subject><subject>Lasers</subject><subject>Microscopy</subject><subject>Nucleosomes</subject><subject>Nucleosomes - chemistry</subject><subject>Osmolar Concentration</subject><subject>Physics</subject><subject>Polystyrenes</subject><subject>Sodium Chloride - pharmacology</subject><subject>Stress, Mechanical</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtvEzEUhS0EoqGwZAVCFlLZTfC1xy-JDYoIrdSqiJYdkuXM2JmJJjOp7anaf4_TpLSwgIV1F-c7vo-D0GsgUyCSfdz0Nk61nMIUqHyCJkA0FKLU5CmaEEJloUpaHqAXMa4IIZor8hwdABGgmKIT9PPb2HVtv8QWX-TSOTxrwrC2qe3xvF24gL-7a2e7iFPj8HwIlYv4srEJn9m2T_nhkxTxcbtsXCjOQ50dFymMVRqDe4me-Wx1r_b1EP2Yf7mcHRen519PZp9Pi4oDSYXgUinquYYagFIhCfdU-YXnwrIaPDACtfVMMK01p7VlnrtaEVFnn68oO0Sfdv9uxsXa1ZXrU7Cd2YR2bcOtGWxr_lT6tjHL4dpQIajM9g97exiuRheTWbexcl1nezeM0UiioMz3-i8IsmRKMJ7B93-Bq2EMfb6BoQQyUMK2bbGDqjDEGJz_PTAQs83WbLM1WhowcDfmu8dbPqJ3YWbgaA9sfffyvd_4nHRyNylzb__BZfnNTl7FNISHNhQkL9kvtry_mg</recordid><startdate>20000104</startdate><enddate>20000104</enddate><creator>Cui, Yujia</creator><creator>Bustamante, Carlos</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000104</creationdate><title>Pulling a Single Chromatin Fiber Reveals the Forces That Maintain Its Higher-Order Structure</title><author>Cui, Yujia ; Bustamante, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-657882f591d11226705f28fbf56a3d1f1301daf36399952da3f5ed806d788fc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Chickens</topic><topic>Chromatin</topic><topic>Chromatin - chemistry</topic><topic>Curvature</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Elastic tissue</topic><topic>Elasticity</topic><topic>Erythrocytes</topic><topic>Erythrocytes - chemistry</topic><topic>Histones</topic><topic>Histones - chemistry</topic><topic>Hysteresis</topic><topic>Lasers</topic><topic>Microscopy</topic><topic>Nucleosomes</topic><topic>Nucleosomes - chemistry</topic><topic>Osmolar Concentration</topic><topic>Physics</topic><topic>Polystyrenes</topic><topic>Sodium Chloride - pharmacology</topic><topic>Stress, Mechanical</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yujia</creatorcontrib><creatorcontrib>Bustamante, Carlos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Yujia</au><au>Bustamante, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulling a Single Chromatin Fiber Reveals the Forces That Maintain Its Higher-Order Structure</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-01-04</date><risdate>2000</risdate><volume>97</volume><issue>1</issue><spage>127</spage><epage>132</epage><pages>127-132</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Single chicken erythrocyte chromatin fibers were stretched and released at room temperature with force-measuring laser tweezers. In low ionic strength, the stretch-release curves reveal a process of continuous deformation with little or no internucleosomal attraction. A persistence length of 30 nm and a stretch modulus of ≈ 5 pN is determined for the fibers. At forces of 20 pN and higher, the fibers are modified irreversibly, probably through the mechanical removal of the histone cores from native chromatin. In 40-150 mM NaCl, a distinctive condensation-decondensation transition appears between 5 and 6 pN, corresponding to an internucleosomal attraction energy of ≈ 2.0 kcal/mol per nucleosome. Thus, in physiological ionic strength the fibers possess a dynamic structure in which the fiber locally interconverting between "open" and "closed" states because of thermal fluctuations.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10618382</pmid><doi>10.1073/pnas.97.1.127</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2000-01, Vol.97 (1), p.127-132
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_26627
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Chickens
Chromatin
Chromatin - chemistry
Curvature
Deoxyribonucleic acid
DNA
Elastic tissue
Elasticity
Erythrocytes
Erythrocytes - chemistry
Histones
Histones - chemistry
Hysteresis
Lasers
Microscopy
Nucleosomes
Nucleosomes - chemistry
Osmolar Concentration
Physics
Polystyrenes
Sodium Chloride - pharmacology
Stress, Mechanical
Thermodynamics
title Pulling a Single Chromatin Fiber Reveals the Forces That Maintain Its Higher-Order Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulling%20a%20Single%20Chromatin%20Fiber%20Reveals%20the%20Forces%20That%20Maintain%20Its%20Higher-Order%20Structure&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cui,%20Yujia&rft.date=2000-01-04&rft.volume=97&rft.issue=1&rft.spage=127&rft.epage=132&rft.pages=127-132&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.97.1.127&rft_dat=%3Cjstor_pubme%3E121754%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201353417&rft_id=info:pmid/10618382&rft_jstor_id=121754&rfr_iscdi=true