Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice

Wnt signaling increases bone mass by stimulating osteoblast lineage commitment and expansion and forms the basis for novel anabolic therapeutic strategies being developed for osteoporosis. These strategies include derepression of Wnt signaling by targeting secreted Wnt pathway antagonists, such as s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2009-04, Vol.119 (4), p.837-851
Hauptverfasser: Kansara, Maya, Tsang, Michael, Kodjabachian, Laurent, Sims, Natalie A, Trivett, Melanie K, Ehrich, Mathias, Dobrovic, Alexander, Slavin, John, Choong, Peter F M, Simmons, Paul J, Dawid, Igor B, Thomas, David M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 851
container_issue 4
container_start_page 837
container_title The Journal of clinical investigation
container_volume 119
creator Kansara, Maya
Tsang, Michael
Kodjabachian, Laurent
Sims, Natalie A
Trivett, Melanie K
Ehrich, Mathias
Dobrovic, Alexander
Slavin, John
Choong, Peter F M
Simmons, Paul J
Dawid, Igor B
Thomas, David M
description Wnt signaling increases bone mass by stimulating osteoblast lineage commitment and expansion and forms the basis for novel anabolic therapeutic strategies being developed for osteoporosis. These strategies include derepression of Wnt signaling by targeting secreted Wnt pathway antagonists, such as sclerostin. However, such therapies are associated with safety concerns regarding an increased risk of osteosarcoma, the most common primary malignancy of bone. Here, we analyzed 5 human osteosarcoma cell lines in a high-throughput screen for epigenetically silenced tumor suppressor genes and identified Wnt inhibitory factor 1 (WIF1), which encodes an endogenous secreted Wnt pathway antagonist, as a candidate tumor suppressor gene. In vitro, WIF1 suppressed beta-catenin levels in human osteosarcoma cell lines, induced differentiation of human and mouse primary osteoblasts, and suppressed the growth of mouse and human osteosarcoma cell lines. Wif1 was highly expressed in the developing and mature mouse skeleton, and, although it was dispensable for normal development, targeted deletion of mouse Wif1 accelerated development of radiation-induced osteosarcomas in vivo. In primary human osteosarcomas, silencing of WIF1 by promoter hypermethylation was associated with loss of differentiation, increased beta-catenin levels, and increased proliferation. These data lead us to suggest that derepression of Wnt signaling by targeting secreted Wnt antagonists in osteoblasts may increase susceptibility to osteosarcoma.
doi_str_mv 10.1172/JCI37175
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2662557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A198339349</galeid><sourcerecordid>A198339349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c678t-c4ea62caa0d46d170c59df610b492e11b9474d4dbeed9a4d7c798ba44f055c563</originalsourceid><addsrcrecordid>eNqNkt2KFDEQhRtR3HEVfAIJXiwK9pp0J53OjbAM_owsLPh7GdJJ9UyW7mRM0uI8gm9thhl1W_ZCclEX-c4p6lQVxWOCzwnh1cv3y1XNCWd3igVhrC3bqm7vFguMK1IKXrcnxYMYrzEmlDJ6vzghosacV-2i-PnVJWTdxnY2-bBDvdK5IoJsRLC1a3CQrFbDsEPRDuA0mIyjzTQqh3xM4KMK2o_qBVLOoKTCGlJmjI1h2ibrHVJawwBBJYgzxd475jbZbrQaHhb3ejVEeHSsp8XnN68_Ld-Vl1dvV8uLy1I3vE2lpqCaSiuFDW0M4VgzYfqG4I6KCgjpBOXUUNMBGKGo4ZqLtlOU9pgxzZr6tHh18N1O3QhGg0tBDXIb7KjCTnpl5fzH2Y1c---yapqKMZ4Nzo4GwX-bICY52phHHJQDP0XZcIIZp1UGn_4DXvspuDycrDBuSE2FyFB5gNZqAGld73NTvc8m9_YO-py6vCCirWuRBZk_v4XPz0BO8VbB85kgMwl-pLWaYpSrjx_-n736MmfPbrAbUEPaRD9M-53HOfjsAOrgYwzQ_8maYLk_X_n7fDP65OZu_oLHe61_AWQa6zM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200613499</pqid></control><display><type>article</type><title>Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kansara, Maya ; Tsang, Michael ; Kodjabachian, Laurent ; Sims, Natalie A ; Trivett, Melanie K ; Ehrich, Mathias ; Dobrovic, Alexander ; Slavin, John ; Choong, Peter F M ; Simmons, Paul J ; Dawid, Igor B ; Thomas, David M</creator><creatorcontrib>Kansara, Maya ; Tsang, Michael ; Kodjabachian, Laurent ; Sims, Natalie A ; Trivett, Melanie K ; Ehrich, Mathias ; Dobrovic, Alexander ; Slavin, John ; Choong, Peter F M ; Simmons, Paul J ; Dawid, Igor B ; Thomas, David M</creatorcontrib><description>Wnt signaling increases bone mass by stimulating osteoblast lineage commitment and expansion and forms the basis for novel anabolic therapeutic strategies being developed for osteoporosis. These strategies include derepression of Wnt signaling by targeting secreted Wnt pathway antagonists, such as sclerostin. However, such therapies are associated with safety concerns regarding an increased risk of osteosarcoma, the most common primary malignancy of bone. Here, we analyzed 5 human osteosarcoma cell lines in a high-throughput screen for epigenetically silenced tumor suppressor genes and identified Wnt inhibitory factor 1 (WIF1), which encodes an endogenous secreted Wnt pathway antagonist, as a candidate tumor suppressor gene. In vitro, WIF1 suppressed beta-catenin levels in human osteosarcoma cell lines, induced differentiation of human and mouse primary osteoblasts, and suppressed the growth of mouse and human osteosarcoma cell lines. Wif1 was highly expressed in the developing and mature mouse skeleton, and, although it was dispensable for normal development, targeted deletion of mouse Wif1 accelerated development of radiation-induced osteosarcomas in vivo. In primary human osteosarcomas, silencing of WIF1 by promoter hypermethylation was associated with loss of differentiation, increased beta-catenin levels, and increased proliferation. These data lead us to suggest that derepression of Wnt signaling by targeting secreted Wnt antagonists in osteoblasts may increase susceptibility to osteosarcoma.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI37175</identifier><identifier>PMID: 19307728</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - physiology ; Animals ; Biomedical research ; Bone cancer ; Bone morphogenetic proteins ; Bones ; Care and treatment ; Cell Differentiation ; Cell Line, Tumor ; Density ; DNA Methylation ; Embryonic Development - genetics ; Epigenetics ; Extracellular Matrix Proteins - deficiency ; Extracellular Matrix Proteins - genetics ; Gene Silencing ; Genes ; Genes, Tumor Suppressor ; Genetic aspects ; Genetic susceptibility ; Health aspects ; Humans ; Intercellular Signaling Peptides and Proteins - deficiency ; Intercellular Signaling Peptides and Proteins - genetics ; Measurement ; Mice ; Mice, Knockout ; Mice, Transgenic ; Osteoblasts - pathology ; Osteoblasts - physiology ; Osteosarcoma ; Osteosarcoma - etiology ; Osteosarcoma - genetics ; Phosphatase ; Physiological aspects ; Promoter Regions, Genetic ; Proteins ; Radiation ; Repressor Proteins - genetics ; Repressor Proteins - physiology ; Signal Transduction ; Wnt Proteins - physiology</subject><ispartof>The Journal of clinical investigation, 2009-04, Vol.119 (4), p.837-851</ispartof><rights>COPYRIGHT 2009 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Apr 2009</rights><rights>Copyright © 2009, American Society for Clinical Investigation 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c678t-c4ea62caa0d46d170c59df610b492e11b9474d4dbeed9a4d7c798ba44f055c563</citedby><cites>FETCH-LOGICAL-c678t-c4ea62caa0d46d170c59df610b492e11b9474d4dbeed9a4d7c798ba44f055c563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662557/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662557/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19307728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kansara, Maya</creatorcontrib><creatorcontrib>Tsang, Michael</creatorcontrib><creatorcontrib>Kodjabachian, Laurent</creatorcontrib><creatorcontrib>Sims, Natalie A</creatorcontrib><creatorcontrib>Trivett, Melanie K</creatorcontrib><creatorcontrib>Ehrich, Mathias</creatorcontrib><creatorcontrib>Dobrovic, Alexander</creatorcontrib><creatorcontrib>Slavin, John</creatorcontrib><creatorcontrib>Choong, Peter F M</creatorcontrib><creatorcontrib>Simmons, Paul J</creatorcontrib><creatorcontrib>Dawid, Igor B</creatorcontrib><creatorcontrib>Thomas, David M</creatorcontrib><title>Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Wnt signaling increases bone mass by stimulating osteoblast lineage commitment and expansion and forms the basis for novel anabolic therapeutic strategies being developed for osteoporosis. These strategies include derepression of Wnt signaling by targeting secreted Wnt pathway antagonists, such as sclerostin. However, such therapies are associated with safety concerns regarding an increased risk of osteosarcoma, the most common primary malignancy of bone. Here, we analyzed 5 human osteosarcoma cell lines in a high-throughput screen for epigenetically silenced tumor suppressor genes and identified Wnt inhibitory factor 1 (WIF1), which encodes an endogenous secreted Wnt pathway antagonist, as a candidate tumor suppressor gene. In vitro, WIF1 suppressed beta-catenin levels in human osteosarcoma cell lines, induced differentiation of human and mouse primary osteoblasts, and suppressed the growth of mouse and human osteosarcoma cell lines. Wif1 was highly expressed in the developing and mature mouse skeleton, and, although it was dispensable for normal development, targeted deletion of mouse Wif1 accelerated development of radiation-induced osteosarcomas in vivo. In primary human osteosarcomas, silencing of WIF1 by promoter hypermethylation was associated with loss of differentiation, increased beta-catenin levels, and increased proliferation. These data lead us to suggest that derepression of Wnt signaling by targeting secreted Wnt antagonists in osteoblasts may increase susceptibility to osteosarcoma.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - physiology</subject><subject>Animals</subject><subject>Biomedical research</subject><subject>Bone cancer</subject><subject>Bone morphogenetic proteins</subject><subject>Bones</subject><subject>Care and treatment</subject><subject>Cell Differentiation</subject><subject>Cell Line, Tumor</subject><subject>Density</subject><subject>DNA Methylation</subject><subject>Embryonic Development - genetics</subject><subject>Epigenetics</subject><subject>Extracellular Matrix Proteins - deficiency</subject><subject>Extracellular Matrix Proteins - genetics</subject><subject>Gene Silencing</subject><subject>Genes</subject><subject>Genes, Tumor Suppressor</subject><subject>Genetic aspects</subject><subject>Genetic susceptibility</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Intercellular Signaling Peptides and Proteins - deficiency</subject><subject>Intercellular Signaling Peptides and Proteins - genetics</subject><subject>Measurement</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Osteoblasts - pathology</subject><subject>Osteoblasts - physiology</subject><subject>Osteosarcoma</subject><subject>Osteosarcoma - etiology</subject><subject>Osteosarcoma - genetics</subject><subject>Phosphatase</subject><subject>Physiological aspects</subject><subject>Promoter Regions, Genetic</subject><subject>Proteins</subject><subject>Radiation</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - physiology</subject><subject>Signal Transduction</subject><subject>Wnt Proteins - physiology</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkt2KFDEQhRtR3HEVfAIJXiwK9pp0J53OjbAM_owsLPh7GdJJ9UyW7mRM0uI8gm9thhl1W_ZCclEX-c4p6lQVxWOCzwnh1cv3y1XNCWd3igVhrC3bqm7vFguMK1IKXrcnxYMYrzEmlDJ6vzghosacV-2i-PnVJWTdxnY2-bBDvdK5IoJsRLC1a3CQrFbDsEPRDuA0mIyjzTQqh3xM4KMK2o_qBVLOoKTCGlJmjI1h2ibrHVJawwBBJYgzxd475jbZbrQaHhb3ejVEeHSsp8XnN68_Ld-Vl1dvV8uLy1I3vE2lpqCaSiuFDW0M4VgzYfqG4I6KCgjpBOXUUNMBGKGo4ZqLtlOU9pgxzZr6tHh18N1O3QhGg0tBDXIb7KjCTnpl5fzH2Y1c---yapqKMZ4Nzo4GwX-bICY52phHHJQDP0XZcIIZp1UGn_4DXvspuDycrDBuSE2FyFB5gNZqAGld73NTvc8m9_YO-py6vCCirWuRBZk_v4XPz0BO8VbB85kgMwl-pLWaYpSrjx_-n736MmfPbrAbUEPaRD9M-53HOfjsAOrgYwzQ_8maYLk_X_n7fDP65OZu_oLHe61_AWQa6zM</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Kansara, Maya</creator><creator>Tsang, Michael</creator><creator>Kodjabachian, Laurent</creator><creator>Sims, Natalie A</creator><creator>Trivett, Melanie K</creator><creator>Ehrich, Mathias</creator><creator>Dobrovic, Alexander</creator><creator>Slavin, John</creator><creator>Choong, Peter F M</creator><creator>Simmons, Paul J</creator><creator>Dawid, Igor B</creator><creator>Thomas, David M</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090401</creationdate><title>Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice</title><author>Kansara, Maya ; Tsang, Michael ; Kodjabachian, Laurent ; Sims, Natalie A ; Trivett, Melanie K ; Ehrich, Mathias ; Dobrovic, Alexander ; Slavin, John ; Choong, Peter F M ; Simmons, Paul J ; Dawid, Igor B ; Thomas, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c678t-c4ea62caa0d46d170c59df610b492e11b9474d4dbeed9a4d7c798ba44f055c563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - physiology</topic><topic>Animals</topic><topic>Biomedical research</topic><topic>Bone cancer</topic><topic>Bone morphogenetic proteins</topic><topic>Bones</topic><topic>Care and treatment</topic><topic>Cell Differentiation</topic><topic>Cell Line, Tumor</topic><topic>Density</topic><topic>DNA Methylation</topic><topic>Embryonic Development - genetics</topic><topic>Epigenetics</topic><topic>Extracellular Matrix Proteins - deficiency</topic><topic>Extracellular Matrix Proteins - genetics</topic><topic>Gene Silencing</topic><topic>Genes</topic><topic>Genes, Tumor Suppressor</topic><topic>Genetic aspects</topic><topic>Genetic susceptibility</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Intercellular Signaling Peptides and Proteins - deficiency</topic><topic>Intercellular Signaling Peptides and Proteins - genetics</topic><topic>Measurement</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Osteoblasts - pathology</topic><topic>Osteoblasts - physiology</topic><topic>Osteosarcoma</topic><topic>Osteosarcoma - etiology</topic><topic>Osteosarcoma - genetics</topic><topic>Phosphatase</topic><topic>Physiological aspects</topic><topic>Promoter Regions, Genetic</topic><topic>Proteins</topic><topic>Radiation</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - physiology</topic><topic>Signal Transduction</topic><topic>Wnt Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kansara, Maya</creatorcontrib><creatorcontrib>Tsang, Michael</creatorcontrib><creatorcontrib>Kodjabachian, Laurent</creatorcontrib><creatorcontrib>Sims, Natalie A</creatorcontrib><creatorcontrib>Trivett, Melanie K</creatorcontrib><creatorcontrib>Ehrich, Mathias</creatorcontrib><creatorcontrib>Dobrovic, Alexander</creatorcontrib><creatorcontrib>Slavin, John</creatorcontrib><creatorcontrib>Choong, Peter F M</creatorcontrib><creatorcontrib>Simmons, Paul J</creatorcontrib><creatorcontrib>Dawid, Igor B</creatorcontrib><creatorcontrib>Thomas, David M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kansara, Maya</au><au>Tsang, Michael</au><au>Kodjabachian, Laurent</au><au>Sims, Natalie A</au><au>Trivett, Melanie K</au><au>Ehrich, Mathias</au><au>Dobrovic, Alexander</au><au>Slavin, John</au><au>Choong, Peter F M</au><au>Simmons, Paul J</au><au>Dawid, Igor B</au><au>Thomas, David M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>119</volume><issue>4</issue><spage>837</spage><epage>851</epage><pages>837-851</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Wnt signaling increases bone mass by stimulating osteoblast lineage commitment and expansion and forms the basis for novel anabolic therapeutic strategies being developed for osteoporosis. These strategies include derepression of Wnt signaling by targeting secreted Wnt pathway antagonists, such as sclerostin. However, such therapies are associated with safety concerns regarding an increased risk of osteosarcoma, the most common primary malignancy of bone. Here, we analyzed 5 human osteosarcoma cell lines in a high-throughput screen for epigenetically silenced tumor suppressor genes and identified Wnt inhibitory factor 1 (WIF1), which encodes an endogenous secreted Wnt pathway antagonist, as a candidate tumor suppressor gene. In vitro, WIF1 suppressed beta-catenin levels in human osteosarcoma cell lines, induced differentiation of human and mouse primary osteoblasts, and suppressed the growth of mouse and human osteosarcoma cell lines. Wif1 was highly expressed in the developing and mature mouse skeleton, and, although it was dispensable for normal development, targeted deletion of mouse Wif1 accelerated development of radiation-induced osteosarcomas in vivo. In primary human osteosarcomas, silencing of WIF1 by promoter hypermethylation was associated with loss of differentiation, increased beta-catenin levels, and increased proliferation. These data lead us to suggest that derepression of Wnt signaling by targeting secreted Wnt antagonists in osteoblasts may increase susceptibility to osteosarcoma.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>19307728</pmid><doi>10.1172/JCI37175</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2009-04, Vol.119 (4), p.837-851
issn 0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2662557
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - physiology
Animals
Biomedical research
Bone cancer
Bone morphogenetic proteins
Bones
Care and treatment
Cell Differentiation
Cell Line, Tumor
Density
DNA Methylation
Embryonic Development - genetics
Epigenetics
Extracellular Matrix Proteins - deficiency
Extracellular Matrix Proteins - genetics
Gene Silencing
Genes
Genes, Tumor Suppressor
Genetic aspects
Genetic susceptibility
Health aspects
Humans
Intercellular Signaling Peptides and Proteins - deficiency
Intercellular Signaling Peptides and Proteins - genetics
Measurement
Mice
Mice, Knockout
Mice, Transgenic
Osteoblasts - pathology
Osteoblasts - physiology
Osteosarcoma
Osteosarcoma - etiology
Osteosarcoma - genetics
Phosphatase
Physiological aspects
Promoter Regions, Genetic
Proteins
Radiation
Repressor Proteins - genetics
Repressor Proteins - physiology
Signal Transduction
Wnt Proteins - physiology
title Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A47%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wnt%20inhibitory%20factor%201%20is%20epigenetically%20silenced%20in%20human%20osteosarcoma,%20and%20targeted%20disruption%20accelerates%20osteosarcomagenesis%20in%20mice&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Kansara,%20Maya&rft.date=2009-04-01&rft.volume=119&rft.issue=4&rft.spage=837&rft.epage=851&rft.pages=837-851&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI37175&rft_dat=%3Cgale_pubme%3EA198339349%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200613499&rft_id=info:pmid/19307728&rft_galeid=A198339349&rfr_iscdi=true