Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice
Wnt signaling increases bone mass by stimulating osteoblast lineage commitment and expansion and forms the basis for novel anabolic therapeutic strategies being developed for osteoporosis. These strategies include derepression of Wnt signaling by targeting secreted Wnt pathway antagonists, such as s...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 2009-04, Vol.119 (4), p.837-851 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 851 |
---|---|
container_issue | 4 |
container_start_page | 837 |
container_title | The Journal of clinical investigation |
container_volume | 119 |
creator | Kansara, Maya Tsang, Michael Kodjabachian, Laurent Sims, Natalie A Trivett, Melanie K Ehrich, Mathias Dobrovic, Alexander Slavin, John Choong, Peter F M Simmons, Paul J Dawid, Igor B Thomas, David M |
description | Wnt signaling increases bone mass by stimulating osteoblast lineage commitment and expansion and forms the basis for novel anabolic therapeutic strategies being developed for osteoporosis. These strategies include derepression of Wnt signaling by targeting secreted Wnt pathway antagonists, such as sclerostin. However, such therapies are associated with safety concerns regarding an increased risk of osteosarcoma, the most common primary malignancy of bone. Here, we analyzed 5 human osteosarcoma cell lines in a high-throughput screen for epigenetically silenced tumor suppressor genes and identified Wnt inhibitory factor 1 (WIF1), which encodes an endogenous secreted Wnt pathway antagonist, as a candidate tumor suppressor gene. In vitro, WIF1 suppressed beta-catenin levels in human osteosarcoma cell lines, induced differentiation of human and mouse primary osteoblasts, and suppressed the growth of mouse and human osteosarcoma cell lines. Wif1 was highly expressed in the developing and mature mouse skeleton, and, although it was dispensable for normal development, targeted deletion of mouse Wif1 accelerated development of radiation-induced osteosarcomas in vivo. In primary human osteosarcomas, silencing of WIF1 by promoter hypermethylation was associated with loss of differentiation, increased beta-catenin levels, and increased proliferation. These data lead us to suggest that derepression of Wnt signaling by targeting secreted Wnt antagonists in osteoblasts may increase susceptibility to osteosarcoma. |
doi_str_mv | 10.1172/JCI37175 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2662557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A198339349</galeid><sourcerecordid>A198339349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c678t-c4ea62caa0d46d170c59df610b492e11b9474d4dbeed9a4d7c798ba44f055c563</originalsourceid><addsrcrecordid>eNqNkt2KFDEQhRtR3HEVfAIJXiwK9pp0J53OjbAM_owsLPh7GdJJ9UyW7mRM0uI8gm9thhl1W_ZCclEX-c4p6lQVxWOCzwnh1cv3y1XNCWd3igVhrC3bqm7vFguMK1IKXrcnxYMYrzEmlDJ6vzghosacV-2i-PnVJWTdxnY2-bBDvdK5IoJsRLC1a3CQrFbDsEPRDuA0mIyjzTQqh3xM4KMK2o_qBVLOoKTCGlJmjI1h2ibrHVJawwBBJYgzxd475jbZbrQaHhb3ejVEeHSsp8XnN68_Ld-Vl1dvV8uLy1I3vE2lpqCaSiuFDW0M4VgzYfqG4I6KCgjpBOXUUNMBGKGo4ZqLtlOU9pgxzZr6tHh18N1O3QhGg0tBDXIb7KjCTnpl5fzH2Y1c---yapqKMZ4Nzo4GwX-bICY52phHHJQDP0XZcIIZp1UGn_4DXvspuDycrDBuSE2FyFB5gNZqAGld73NTvc8m9_YO-py6vCCirWuRBZk_v4XPz0BO8VbB85kgMwl-pLWaYpSrjx_-n736MmfPbrAbUEPaRD9M-53HOfjsAOrgYwzQ_8maYLk_X_n7fDP65OZu_oLHe61_AWQa6zM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200613499</pqid></control><display><type>article</type><title>Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kansara, Maya ; Tsang, Michael ; Kodjabachian, Laurent ; Sims, Natalie A ; Trivett, Melanie K ; Ehrich, Mathias ; Dobrovic, Alexander ; Slavin, John ; Choong, Peter F M ; Simmons, Paul J ; Dawid, Igor B ; Thomas, David M</creator><creatorcontrib>Kansara, Maya ; Tsang, Michael ; Kodjabachian, Laurent ; Sims, Natalie A ; Trivett, Melanie K ; Ehrich, Mathias ; Dobrovic, Alexander ; Slavin, John ; Choong, Peter F M ; Simmons, Paul J ; Dawid, Igor B ; Thomas, David M</creatorcontrib><description>Wnt signaling increases bone mass by stimulating osteoblast lineage commitment and expansion and forms the basis for novel anabolic therapeutic strategies being developed for osteoporosis. These strategies include derepression of Wnt signaling by targeting secreted Wnt pathway antagonists, such as sclerostin. However, such therapies are associated with safety concerns regarding an increased risk of osteosarcoma, the most common primary malignancy of bone. Here, we analyzed 5 human osteosarcoma cell lines in a high-throughput screen for epigenetically silenced tumor suppressor genes and identified Wnt inhibitory factor 1 (WIF1), which encodes an endogenous secreted Wnt pathway antagonist, as a candidate tumor suppressor gene. In vitro, WIF1 suppressed beta-catenin levels in human osteosarcoma cell lines, induced differentiation of human and mouse primary osteoblasts, and suppressed the growth of mouse and human osteosarcoma cell lines. Wif1 was highly expressed in the developing and mature mouse skeleton, and, although it was dispensable for normal development, targeted deletion of mouse Wif1 accelerated development of radiation-induced osteosarcomas in vivo. In primary human osteosarcomas, silencing of WIF1 by promoter hypermethylation was associated with loss of differentiation, increased beta-catenin levels, and increased proliferation. These data lead us to suggest that derepression of Wnt signaling by targeting secreted Wnt antagonists in osteoblasts may increase susceptibility to osteosarcoma.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI37175</identifier><identifier>PMID: 19307728</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - physiology ; Animals ; Biomedical research ; Bone cancer ; Bone morphogenetic proteins ; Bones ; Care and treatment ; Cell Differentiation ; Cell Line, Tumor ; Density ; DNA Methylation ; Embryonic Development - genetics ; Epigenetics ; Extracellular Matrix Proteins - deficiency ; Extracellular Matrix Proteins - genetics ; Gene Silencing ; Genes ; Genes, Tumor Suppressor ; Genetic aspects ; Genetic susceptibility ; Health aspects ; Humans ; Intercellular Signaling Peptides and Proteins - deficiency ; Intercellular Signaling Peptides and Proteins - genetics ; Measurement ; Mice ; Mice, Knockout ; Mice, Transgenic ; Osteoblasts - pathology ; Osteoblasts - physiology ; Osteosarcoma ; Osteosarcoma - etiology ; Osteosarcoma - genetics ; Phosphatase ; Physiological aspects ; Promoter Regions, Genetic ; Proteins ; Radiation ; Repressor Proteins - genetics ; Repressor Proteins - physiology ; Signal Transduction ; Wnt Proteins - physiology</subject><ispartof>The Journal of clinical investigation, 2009-04, Vol.119 (4), p.837-851</ispartof><rights>COPYRIGHT 2009 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Apr 2009</rights><rights>Copyright © 2009, American Society for Clinical Investigation 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c678t-c4ea62caa0d46d170c59df610b492e11b9474d4dbeed9a4d7c798ba44f055c563</citedby><cites>FETCH-LOGICAL-c678t-c4ea62caa0d46d170c59df610b492e11b9474d4dbeed9a4d7c798ba44f055c563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662557/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662557/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19307728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kansara, Maya</creatorcontrib><creatorcontrib>Tsang, Michael</creatorcontrib><creatorcontrib>Kodjabachian, Laurent</creatorcontrib><creatorcontrib>Sims, Natalie A</creatorcontrib><creatorcontrib>Trivett, Melanie K</creatorcontrib><creatorcontrib>Ehrich, Mathias</creatorcontrib><creatorcontrib>Dobrovic, Alexander</creatorcontrib><creatorcontrib>Slavin, John</creatorcontrib><creatorcontrib>Choong, Peter F M</creatorcontrib><creatorcontrib>Simmons, Paul J</creatorcontrib><creatorcontrib>Dawid, Igor B</creatorcontrib><creatorcontrib>Thomas, David M</creatorcontrib><title>Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Wnt signaling increases bone mass by stimulating osteoblast lineage commitment and expansion and forms the basis for novel anabolic therapeutic strategies being developed for osteoporosis. These strategies include derepression of Wnt signaling by targeting secreted Wnt pathway antagonists, such as sclerostin. However, such therapies are associated with safety concerns regarding an increased risk of osteosarcoma, the most common primary malignancy of bone. Here, we analyzed 5 human osteosarcoma cell lines in a high-throughput screen for epigenetically silenced tumor suppressor genes and identified Wnt inhibitory factor 1 (WIF1), which encodes an endogenous secreted Wnt pathway antagonist, as a candidate tumor suppressor gene. In vitro, WIF1 suppressed beta-catenin levels in human osteosarcoma cell lines, induced differentiation of human and mouse primary osteoblasts, and suppressed the growth of mouse and human osteosarcoma cell lines. Wif1 was highly expressed in the developing and mature mouse skeleton, and, although it was dispensable for normal development, targeted deletion of mouse Wif1 accelerated development of radiation-induced osteosarcomas in vivo. In primary human osteosarcomas, silencing of WIF1 by promoter hypermethylation was associated with loss of differentiation, increased beta-catenin levels, and increased proliferation. These data lead us to suggest that derepression of Wnt signaling by targeting secreted Wnt antagonists in osteoblasts may increase susceptibility to osteosarcoma.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - physiology</subject><subject>Animals</subject><subject>Biomedical research</subject><subject>Bone cancer</subject><subject>Bone morphogenetic proteins</subject><subject>Bones</subject><subject>Care and treatment</subject><subject>Cell Differentiation</subject><subject>Cell Line, Tumor</subject><subject>Density</subject><subject>DNA Methylation</subject><subject>Embryonic Development - genetics</subject><subject>Epigenetics</subject><subject>Extracellular Matrix Proteins - deficiency</subject><subject>Extracellular Matrix Proteins - genetics</subject><subject>Gene Silencing</subject><subject>Genes</subject><subject>Genes, Tumor Suppressor</subject><subject>Genetic aspects</subject><subject>Genetic susceptibility</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Intercellular Signaling Peptides and Proteins - deficiency</subject><subject>Intercellular Signaling Peptides and Proteins - genetics</subject><subject>Measurement</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Osteoblasts - pathology</subject><subject>Osteoblasts - physiology</subject><subject>Osteosarcoma</subject><subject>Osteosarcoma - etiology</subject><subject>Osteosarcoma - genetics</subject><subject>Phosphatase</subject><subject>Physiological aspects</subject><subject>Promoter Regions, Genetic</subject><subject>Proteins</subject><subject>Radiation</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - physiology</subject><subject>Signal Transduction</subject><subject>Wnt Proteins - physiology</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkt2KFDEQhRtR3HEVfAIJXiwK9pp0J53OjbAM_owsLPh7GdJJ9UyW7mRM0uI8gm9thhl1W_ZCclEX-c4p6lQVxWOCzwnh1cv3y1XNCWd3igVhrC3bqm7vFguMK1IKXrcnxYMYrzEmlDJ6vzghosacV-2i-PnVJWTdxnY2-bBDvdK5IoJsRLC1a3CQrFbDsEPRDuA0mIyjzTQqh3xM4KMK2o_qBVLOoKTCGlJmjI1h2ibrHVJawwBBJYgzxd475jbZbrQaHhb3ejVEeHSsp8XnN68_Ld-Vl1dvV8uLy1I3vE2lpqCaSiuFDW0M4VgzYfqG4I6KCgjpBOXUUNMBGKGo4ZqLtlOU9pgxzZr6tHh18N1O3QhGg0tBDXIb7KjCTnpl5fzH2Y1c---yapqKMZ4Nzo4GwX-bICY52phHHJQDP0XZcIIZp1UGn_4DXvspuDycrDBuSE2FyFB5gNZqAGld73NTvc8m9_YO-py6vCCirWuRBZk_v4XPz0BO8VbB85kgMwl-pLWaYpSrjx_-n736MmfPbrAbUEPaRD9M-53HOfjsAOrgYwzQ_8maYLk_X_n7fDP65OZu_oLHe61_AWQa6zM</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Kansara, Maya</creator><creator>Tsang, Michael</creator><creator>Kodjabachian, Laurent</creator><creator>Sims, Natalie A</creator><creator>Trivett, Melanie K</creator><creator>Ehrich, Mathias</creator><creator>Dobrovic, Alexander</creator><creator>Slavin, John</creator><creator>Choong, Peter F M</creator><creator>Simmons, Paul J</creator><creator>Dawid, Igor B</creator><creator>Thomas, David M</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090401</creationdate><title>Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice</title><author>Kansara, Maya ; Tsang, Michael ; Kodjabachian, Laurent ; Sims, Natalie A ; Trivett, Melanie K ; Ehrich, Mathias ; Dobrovic, Alexander ; Slavin, John ; Choong, Peter F M ; Simmons, Paul J ; Dawid, Igor B ; Thomas, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c678t-c4ea62caa0d46d170c59df610b492e11b9474d4dbeed9a4d7c798ba44f055c563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - physiology</topic><topic>Animals</topic><topic>Biomedical research</topic><topic>Bone cancer</topic><topic>Bone morphogenetic proteins</topic><topic>Bones</topic><topic>Care and treatment</topic><topic>Cell Differentiation</topic><topic>Cell Line, Tumor</topic><topic>Density</topic><topic>DNA Methylation</topic><topic>Embryonic Development - genetics</topic><topic>Epigenetics</topic><topic>Extracellular Matrix Proteins - deficiency</topic><topic>Extracellular Matrix Proteins - genetics</topic><topic>Gene Silencing</topic><topic>Genes</topic><topic>Genes, Tumor Suppressor</topic><topic>Genetic aspects</topic><topic>Genetic susceptibility</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Intercellular Signaling Peptides and Proteins - deficiency</topic><topic>Intercellular Signaling Peptides and Proteins - genetics</topic><topic>Measurement</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Osteoblasts - pathology</topic><topic>Osteoblasts - physiology</topic><topic>Osteosarcoma</topic><topic>Osteosarcoma - etiology</topic><topic>Osteosarcoma - genetics</topic><topic>Phosphatase</topic><topic>Physiological aspects</topic><topic>Promoter Regions, Genetic</topic><topic>Proteins</topic><topic>Radiation</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - physiology</topic><topic>Signal Transduction</topic><topic>Wnt Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kansara, Maya</creatorcontrib><creatorcontrib>Tsang, Michael</creatorcontrib><creatorcontrib>Kodjabachian, Laurent</creatorcontrib><creatorcontrib>Sims, Natalie A</creatorcontrib><creatorcontrib>Trivett, Melanie K</creatorcontrib><creatorcontrib>Ehrich, Mathias</creatorcontrib><creatorcontrib>Dobrovic, Alexander</creatorcontrib><creatorcontrib>Slavin, John</creatorcontrib><creatorcontrib>Choong, Peter F M</creatorcontrib><creatorcontrib>Simmons, Paul J</creatorcontrib><creatorcontrib>Dawid, Igor B</creatorcontrib><creatorcontrib>Thomas, David M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kansara, Maya</au><au>Tsang, Michael</au><au>Kodjabachian, Laurent</au><au>Sims, Natalie A</au><au>Trivett, Melanie K</au><au>Ehrich, Mathias</au><au>Dobrovic, Alexander</au><au>Slavin, John</au><au>Choong, Peter F M</au><au>Simmons, Paul J</au><au>Dawid, Igor B</au><au>Thomas, David M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>119</volume><issue>4</issue><spage>837</spage><epage>851</epage><pages>837-851</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Wnt signaling increases bone mass by stimulating osteoblast lineage commitment and expansion and forms the basis for novel anabolic therapeutic strategies being developed for osteoporosis. These strategies include derepression of Wnt signaling by targeting secreted Wnt pathway antagonists, such as sclerostin. However, such therapies are associated with safety concerns regarding an increased risk of osteosarcoma, the most common primary malignancy of bone. Here, we analyzed 5 human osteosarcoma cell lines in a high-throughput screen for epigenetically silenced tumor suppressor genes and identified Wnt inhibitory factor 1 (WIF1), which encodes an endogenous secreted Wnt pathway antagonist, as a candidate tumor suppressor gene. In vitro, WIF1 suppressed beta-catenin levels in human osteosarcoma cell lines, induced differentiation of human and mouse primary osteoblasts, and suppressed the growth of mouse and human osteosarcoma cell lines. Wif1 was highly expressed in the developing and mature mouse skeleton, and, although it was dispensable for normal development, targeted deletion of mouse Wif1 accelerated development of radiation-induced osteosarcomas in vivo. In primary human osteosarcomas, silencing of WIF1 by promoter hypermethylation was associated with loss of differentiation, increased beta-catenin levels, and increased proliferation. These data lead us to suggest that derepression of Wnt signaling by targeting secreted Wnt antagonists in osteoblasts may increase susceptibility to osteosarcoma.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>19307728</pmid><doi>10.1172/JCI37175</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9738 |
ispartof | The Journal of clinical investigation, 2009-04, Vol.119 (4), p.837-851 |
issn | 0021-9738 1558-8238 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2662557 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - physiology Animals Biomedical research Bone cancer Bone morphogenetic proteins Bones Care and treatment Cell Differentiation Cell Line, Tumor Density DNA Methylation Embryonic Development - genetics Epigenetics Extracellular Matrix Proteins - deficiency Extracellular Matrix Proteins - genetics Gene Silencing Genes Genes, Tumor Suppressor Genetic aspects Genetic susceptibility Health aspects Humans Intercellular Signaling Peptides and Proteins - deficiency Intercellular Signaling Peptides and Proteins - genetics Measurement Mice Mice, Knockout Mice, Transgenic Osteoblasts - pathology Osteoblasts - physiology Osteosarcoma Osteosarcoma - etiology Osteosarcoma - genetics Phosphatase Physiological aspects Promoter Regions, Genetic Proteins Radiation Repressor Proteins - genetics Repressor Proteins - physiology Signal Transduction Wnt Proteins - physiology |
title | Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A47%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wnt%20inhibitory%20factor%201%20is%20epigenetically%20silenced%20in%20human%20osteosarcoma,%20and%20targeted%20disruption%20accelerates%20osteosarcomagenesis%20in%20mice&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Kansara,%20Maya&rft.date=2009-04-01&rft.volume=119&rft.issue=4&rft.spage=837&rft.epage=851&rft.pages=837-851&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI37175&rft_dat=%3Cgale_pubme%3EA198339349%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200613499&rft_id=info:pmid/19307728&rft_galeid=A198339349&rfr_iscdi=true |