The Third Intracellular Loop Stabilizes the Inactive State of the Neuropeptide Y1 Receptor

Constitutively active G-protein-coupled receptors (GPCRs) can signal even in the absence of ligand binding. Most Class I GPCRs are stabilized in the resting conformation by intramolecular interactions involving transmembrane domain (TM) 3 and TM6, particularly at loci 6.30 and 6.34 of TM6. Signaling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2008-11, Vol.283 (48), p.33337-33346
Hauptverfasser: Chee, Melissa J.S., Mörl, Karin, Lindner, Diana, Merten, Nicole, Zamponi, Gerald W., Light, Peter E., Beck-Sickinger, Annette G., Colmers, William F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33346
container_issue 48
container_start_page 33337
container_title The Journal of biological chemistry
container_volume 283
creator Chee, Melissa J.S.
Mörl, Karin
Lindner, Diana
Merten, Nicole
Zamponi, Gerald W.
Light, Peter E.
Beck-Sickinger, Annette G.
Colmers, William F.
description Constitutively active G-protein-coupled receptors (GPCRs) can signal even in the absence of ligand binding. Most Class I GPCRs are stabilized in the resting conformation by intramolecular interactions involving transmembrane domain (TM) 3 and TM6, particularly at loci 6.30 and 6.34 of TM6. Signaling by Gi/Go-coupled receptors such as the Neuropeptide Y1 receptor decreases already low basal metabolite levels. Thus, we examined constitutive activity using a biochemical assay mediated by a Gi/Gq chimeric protein and a more direct electrophysiological assay. Wild-type (WT-Y1) receptors express no measurable, agonist-independent activation, while μ-opioid receptors (MOR) and P2Y12 purinoceptors showed clear evidence of constitutive activation, especially in the electrophysiological assay. Neither point mutations at TM6 (T6.30A or N6.34A) nor substitution of the entire TM3 and TM6 regions from the MOR into the Y1 receptor increased basal WT-Y1 activation. By contrast, chimeric substitution of the third intracellular loop (ICL3) generated a constitutively active, Y1-ICL3-MOR chimera. Furthermore, the loss of stabilizing interactions from the native ICL3 enhanced the role of surrounding residues to permit basal receptor activation; because constitutive activity of the Y1-ICL3-MOR chimera was further increased by point mutation at locus 6.34, which did not alter WT-Y1 receptor activity. Our results indicate that the ICL3 stabilizes the Y1 receptor in the inactive state and confers structural properties critical for regulating Y receptor activation and signal transduction. These studies reveal the active participation of the ICL3 in the stabilization and activation of Class I GPCRs.
doi_str_mv 10.1074/jbc.M804671200
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2662261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820634810</els_id><sourcerecordid>69823546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-f9dad1f33381fe79ea0ac380e4f767820ac6135f34ce711ae7a89090abf1216c3</originalsourceid><addsrcrecordid>eNp1kc2P0zAQxS0EYkvhyhFyQNxSPHbqOBcktOKjUgGJ7UrAxXKcceNVGgc7KYK_HpdULBzwxZrxz8_j9wh5DHQFtCxe3NRm9V7SQpTAKL1DFkAlz_kaPt8lC0oZ5BVbywvyIMYbmlZRwX1yAVIC4yAW5OuuxWzXutBkm34M2mDXTZ0O2db7Ibsade069xNjNiZu02szuiOe-iNm3v7ufsAp-AGH0TWYfYHsE5pU-PCQ3LO6i_jovC_J9ZvXu8t3-fbj283lq21uioqOua0a3YDlnEuwWFaoqTZcUixsKUrJUiWAry0vDJYAGkstK1pRXVtgIAxfkpez7jDVB2wMnv7RqSG4gw4_lNdO_XvSu1bt_VExIRhL2kvy_CwQ_LcJ46gOLp6M0D36KSpRScbXhUjgagZN8DEGtH8eAapOcagUh7qNI1148vdot_jZ_wQ8m4HW7dvvLqCqnTctHhSTXBVSJVt4mbCnM2a1V3ofXFTXV4wCp7AWjHOWCDkTmJw-OgwqGoe9wSaJmlE13v1vyF_Ar68J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69823546</pqid></control><display><type>article</type><title>The Third Intracellular Loop Stabilizes the Inactive State of the Neuropeptide Y1 Receptor</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Chee, Melissa J.S. ; Mörl, Karin ; Lindner, Diana ; Merten, Nicole ; Zamponi, Gerald W. ; Light, Peter E. ; Beck-Sickinger, Annette G. ; Colmers, William F.</creator><creatorcontrib>Chee, Melissa J.S. ; Mörl, Karin ; Lindner, Diana ; Merten, Nicole ; Zamponi, Gerald W. ; Light, Peter E. ; Beck-Sickinger, Annette G. ; Colmers, William F.</creatorcontrib><description>Constitutively active G-protein-coupled receptors (GPCRs) can signal even in the absence of ligand binding. Most Class I GPCRs are stabilized in the resting conformation by intramolecular interactions involving transmembrane domain (TM) 3 and TM6, particularly at loci 6.30 and 6.34 of TM6. Signaling by Gi/Go-coupled receptors such as the Neuropeptide Y1 receptor decreases already low basal metabolite levels. Thus, we examined constitutive activity using a biochemical assay mediated by a Gi/Gq chimeric protein and a more direct electrophysiological assay. Wild-type (WT-Y1) receptors express no measurable, agonist-independent activation, while μ-opioid receptors (MOR) and P2Y12 purinoceptors showed clear evidence of constitutive activation, especially in the electrophysiological assay. Neither point mutations at TM6 (T6.30A or N6.34A) nor substitution of the entire TM3 and TM6 regions from the MOR into the Y1 receptor increased basal WT-Y1 activation. By contrast, chimeric substitution of the third intracellular loop (ICL3) generated a constitutively active, Y1-ICL3-MOR chimera. Furthermore, the loss of stabilizing interactions from the native ICL3 enhanced the role of surrounding residues to permit basal receptor activation; because constitutive activity of the Y1-ICL3-MOR chimera was further increased by point mutation at locus 6.34, which did not alter WT-Y1 receptor activity. Our results indicate that the ICL3 stabilizes the Y1 receptor in the inactive state and confers structural properties critical for regulating Y receptor activation and signal transduction. These studies reveal the active participation of the ICL3 in the stabilization and activation of Class I GPCRs.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M804671200</identifier><identifier>PMID: 18812316</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Chlorocebus aethiops ; COS Cells ; GTP-Binding Protein alpha Subunits, Gi-Go - genetics ; GTP-Binding Protein alpha Subunits, Gi-Go - metabolism ; GTP-Binding Protein alpha Subunits, Gq-G11 - genetics ; GTP-Binding Protein alpha Subunits, Gq-G11 - metabolism ; Humans ; Mechanisms of Signal Transduction ; Point Mutation ; Protein Structure, Secondary - physiology ; Protein Structure, Tertiary - physiology ; Receptors, Neuropeptide Y - genetics ; Receptors, Neuropeptide Y - metabolism ; Receptors, Opioid, mu - genetics ; Receptors, Opioid, mu - metabolism ; Receptors, Purinergic P2 - genetics ; Receptors, Purinergic P2 - metabolism ; Receptors, Purinergic P2Y12 ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Signal Transduction - physiology</subject><ispartof>The Journal of biological chemistry, 2008-11, Vol.283 (48), p.33337-33346</ispartof><rights>2008 © 2008 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Copyright © 2008, The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-f9dad1f33381fe79ea0ac380e4f767820ac6135f34ce711ae7a89090abf1216c3</citedby><cites>FETCH-LOGICAL-c490t-f9dad1f33381fe79ea0ac380e4f767820ac6135f34ce711ae7a89090abf1216c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662261/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662261/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18812316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chee, Melissa J.S.</creatorcontrib><creatorcontrib>Mörl, Karin</creatorcontrib><creatorcontrib>Lindner, Diana</creatorcontrib><creatorcontrib>Merten, Nicole</creatorcontrib><creatorcontrib>Zamponi, Gerald W.</creatorcontrib><creatorcontrib>Light, Peter E.</creatorcontrib><creatorcontrib>Beck-Sickinger, Annette G.</creatorcontrib><creatorcontrib>Colmers, William F.</creatorcontrib><title>The Third Intracellular Loop Stabilizes the Inactive State of the Neuropeptide Y1 Receptor</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Constitutively active G-protein-coupled receptors (GPCRs) can signal even in the absence of ligand binding. Most Class I GPCRs are stabilized in the resting conformation by intramolecular interactions involving transmembrane domain (TM) 3 and TM6, particularly at loci 6.30 and 6.34 of TM6. Signaling by Gi/Go-coupled receptors such as the Neuropeptide Y1 receptor decreases already low basal metabolite levels. Thus, we examined constitutive activity using a biochemical assay mediated by a Gi/Gq chimeric protein and a more direct electrophysiological assay. Wild-type (WT-Y1) receptors express no measurable, agonist-independent activation, while μ-opioid receptors (MOR) and P2Y12 purinoceptors showed clear evidence of constitutive activation, especially in the electrophysiological assay. Neither point mutations at TM6 (T6.30A or N6.34A) nor substitution of the entire TM3 and TM6 regions from the MOR into the Y1 receptor increased basal WT-Y1 activation. By contrast, chimeric substitution of the third intracellular loop (ICL3) generated a constitutively active, Y1-ICL3-MOR chimera. Furthermore, the loss of stabilizing interactions from the native ICL3 enhanced the role of surrounding residues to permit basal receptor activation; because constitutive activity of the Y1-ICL3-MOR chimera was further increased by point mutation at locus 6.34, which did not alter WT-Y1 receptor activity. Our results indicate that the ICL3 stabilizes the Y1 receptor in the inactive state and confers structural properties critical for regulating Y receptor activation and signal transduction. These studies reveal the active participation of the ICL3 in the stabilization and activation of Class I GPCRs.</description><subject>Animals</subject><subject>Chlorocebus aethiops</subject><subject>COS Cells</subject><subject>GTP-Binding Protein alpha Subunits, Gi-Go - genetics</subject><subject>GTP-Binding Protein alpha Subunits, Gi-Go - metabolism</subject><subject>GTP-Binding Protein alpha Subunits, Gq-G11 - genetics</subject><subject>GTP-Binding Protein alpha Subunits, Gq-G11 - metabolism</subject><subject>Humans</subject><subject>Mechanisms of Signal Transduction</subject><subject>Point Mutation</subject><subject>Protein Structure, Secondary - physiology</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Receptors, Neuropeptide Y - genetics</subject><subject>Receptors, Neuropeptide Y - metabolism</subject><subject>Receptors, Opioid, mu - genetics</subject><subject>Receptors, Opioid, mu - metabolism</subject><subject>Receptors, Purinergic P2 - genetics</subject><subject>Receptors, Purinergic P2 - metabolism</subject><subject>Receptors, Purinergic P2Y12</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Signal Transduction - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc2P0zAQxS0EYkvhyhFyQNxSPHbqOBcktOKjUgGJ7UrAxXKcceNVGgc7KYK_HpdULBzwxZrxz8_j9wh5DHQFtCxe3NRm9V7SQpTAKL1DFkAlz_kaPt8lC0oZ5BVbywvyIMYbmlZRwX1yAVIC4yAW5OuuxWzXutBkm34M2mDXTZ0O2db7Ibsade069xNjNiZu02szuiOe-iNm3v7ufsAp-AGH0TWYfYHsE5pU-PCQ3LO6i_jovC_J9ZvXu8t3-fbj283lq21uioqOua0a3YDlnEuwWFaoqTZcUixsKUrJUiWAry0vDJYAGkstK1pRXVtgIAxfkpez7jDVB2wMnv7RqSG4gw4_lNdO_XvSu1bt_VExIRhL2kvy_CwQ_LcJ46gOLp6M0D36KSpRScbXhUjgagZN8DEGtH8eAapOcagUh7qNI1148vdot_jZ_wQ8m4HW7dvvLqCqnTctHhSTXBVSJVt4mbCnM2a1V3ofXFTXV4wCp7AWjHOWCDkTmJw-OgwqGoe9wSaJmlE13v1vyF_Ar68J</recordid><startdate>20081128</startdate><enddate>20081128</enddate><creator>Chee, Melissa J.S.</creator><creator>Mörl, Karin</creator><creator>Lindner, Diana</creator><creator>Merten, Nicole</creator><creator>Zamponi, Gerald W.</creator><creator>Light, Peter E.</creator><creator>Beck-Sickinger, Annette G.</creator><creator>Colmers, William F.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081128</creationdate><title>The Third Intracellular Loop Stabilizes the Inactive State of the Neuropeptide Y1 Receptor</title><author>Chee, Melissa J.S. ; Mörl, Karin ; Lindner, Diana ; Merten, Nicole ; Zamponi, Gerald W. ; Light, Peter E. ; Beck-Sickinger, Annette G. ; Colmers, William F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-f9dad1f33381fe79ea0ac380e4f767820ac6135f34ce711ae7a89090abf1216c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Chlorocebus aethiops</topic><topic>COS Cells</topic><topic>GTP-Binding Protein alpha Subunits, Gi-Go - genetics</topic><topic>GTP-Binding Protein alpha Subunits, Gi-Go - metabolism</topic><topic>GTP-Binding Protein alpha Subunits, Gq-G11 - genetics</topic><topic>GTP-Binding Protein alpha Subunits, Gq-G11 - metabolism</topic><topic>Humans</topic><topic>Mechanisms of Signal Transduction</topic><topic>Point Mutation</topic><topic>Protein Structure, Secondary - physiology</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Receptors, Neuropeptide Y - genetics</topic><topic>Receptors, Neuropeptide Y - metabolism</topic><topic>Receptors, Opioid, mu - genetics</topic><topic>Receptors, Opioid, mu - metabolism</topic><topic>Receptors, Purinergic P2 - genetics</topic><topic>Receptors, Purinergic P2 - metabolism</topic><topic>Receptors, Purinergic P2Y12</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chee, Melissa J.S.</creatorcontrib><creatorcontrib>Mörl, Karin</creatorcontrib><creatorcontrib>Lindner, Diana</creatorcontrib><creatorcontrib>Merten, Nicole</creatorcontrib><creatorcontrib>Zamponi, Gerald W.</creatorcontrib><creatorcontrib>Light, Peter E.</creatorcontrib><creatorcontrib>Beck-Sickinger, Annette G.</creatorcontrib><creatorcontrib>Colmers, William F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chee, Melissa J.S.</au><au>Mörl, Karin</au><au>Lindner, Diana</au><au>Merten, Nicole</au><au>Zamponi, Gerald W.</au><au>Light, Peter E.</au><au>Beck-Sickinger, Annette G.</au><au>Colmers, William F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Third Intracellular Loop Stabilizes the Inactive State of the Neuropeptide Y1 Receptor</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2008-11-28</date><risdate>2008</risdate><volume>283</volume><issue>48</issue><spage>33337</spage><epage>33346</epage><pages>33337-33346</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Constitutively active G-protein-coupled receptors (GPCRs) can signal even in the absence of ligand binding. Most Class I GPCRs are stabilized in the resting conformation by intramolecular interactions involving transmembrane domain (TM) 3 and TM6, particularly at loci 6.30 and 6.34 of TM6. Signaling by Gi/Go-coupled receptors such as the Neuropeptide Y1 receptor decreases already low basal metabolite levels. Thus, we examined constitutive activity using a biochemical assay mediated by a Gi/Gq chimeric protein and a more direct electrophysiological assay. Wild-type (WT-Y1) receptors express no measurable, agonist-independent activation, while μ-opioid receptors (MOR) and P2Y12 purinoceptors showed clear evidence of constitutive activation, especially in the electrophysiological assay. Neither point mutations at TM6 (T6.30A or N6.34A) nor substitution of the entire TM3 and TM6 regions from the MOR into the Y1 receptor increased basal WT-Y1 activation. By contrast, chimeric substitution of the third intracellular loop (ICL3) generated a constitutively active, Y1-ICL3-MOR chimera. Furthermore, the loss of stabilizing interactions from the native ICL3 enhanced the role of surrounding residues to permit basal receptor activation; because constitutive activity of the Y1-ICL3-MOR chimera was further increased by point mutation at locus 6.34, which did not alter WT-Y1 receptor activity. Our results indicate that the ICL3 stabilizes the Y1 receptor in the inactive state and confers structural properties critical for regulating Y receptor activation and signal transduction. These studies reveal the active participation of the ICL3 in the stabilization and activation of Class I GPCRs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18812316</pmid><doi>10.1074/jbc.M804671200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2008-11, Vol.283 (48), p.33337-33346
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2662261
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Chlorocebus aethiops
COS Cells
GTP-Binding Protein alpha Subunits, Gi-Go - genetics
GTP-Binding Protein alpha Subunits, Gi-Go - metabolism
GTP-Binding Protein alpha Subunits, Gq-G11 - genetics
GTP-Binding Protein alpha Subunits, Gq-G11 - metabolism
Humans
Mechanisms of Signal Transduction
Point Mutation
Protein Structure, Secondary - physiology
Protein Structure, Tertiary - physiology
Receptors, Neuropeptide Y - genetics
Receptors, Neuropeptide Y - metabolism
Receptors, Opioid, mu - genetics
Receptors, Opioid, mu - metabolism
Receptors, Purinergic P2 - genetics
Receptors, Purinergic P2 - metabolism
Receptors, Purinergic P2Y12
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Signal Transduction - physiology
title The Third Intracellular Loop Stabilizes the Inactive State of the Neuropeptide Y1 Receptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T04%3A20%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Third%20Intracellular%20Loop%20Stabilizes%20the%20Inactive%20State%20of%20the%20Neuropeptide%20Y1%20Receptor&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Chee,%20Melissa%20J.S.&rft.date=2008-11-28&rft.volume=283&rft.issue=48&rft.spage=33337&rft.epage=33346&rft.pages=33337-33346&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M804671200&rft_dat=%3Cproquest_pubme%3E69823546%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69823546&rft_id=info:pmid/18812316&rft_els_id=S0021925820634810&rfr_iscdi=true