The Third Intracellular Loop Stabilizes the Inactive State of the Neuropeptide Y1 Receptor
Constitutively active G-protein-coupled receptors (GPCRs) can signal even in the absence of ligand binding. Most Class I GPCRs are stabilized in the resting conformation by intramolecular interactions involving transmembrane domain (TM) 3 and TM6, particularly at loci 6.30 and 6.34 of TM6. Signaling...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2008-11, Vol.283 (48), p.33337-33346 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33346 |
---|---|
container_issue | 48 |
container_start_page | 33337 |
container_title | The Journal of biological chemistry |
container_volume | 283 |
creator | Chee, Melissa J.S. Mörl, Karin Lindner, Diana Merten, Nicole Zamponi, Gerald W. Light, Peter E. Beck-Sickinger, Annette G. Colmers, William F. |
description | Constitutively active G-protein-coupled receptors (GPCRs) can signal even in the absence of ligand binding. Most Class I GPCRs are stabilized in the resting conformation by intramolecular interactions involving transmembrane domain (TM) 3 and TM6, particularly at loci 6.30 and 6.34 of TM6. Signaling by Gi/Go-coupled receptors such as the Neuropeptide Y1 receptor decreases already low basal metabolite levels. Thus, we examined constitutive activity using a biochemical assay mediated by a Gi/Gq chimeric protein and a more direct electrophysiological assay. Wild-type (WT-Y1) receptors express no measurable, agonist-independent activation, while μ-opioid receptors (MOR) and P2Y12 purinoceptors showed clear evidence of constitutive activation, especially in the electrophysiological assay. Neither point mutations at TM6 (T6.30A or N6.34A) nor substitution of the entire TM3 and TM6 regions from the MOR into the Y1 receptor increased basal WT-Y1 activation. By contrast, chimeric substitution of the third intracellular loop (ICL3) generated a constitutively active, Y1-ICL3-MOR chimera. Furthermore, the loss of stabilizing interactions from the native ICL3 enhanced the role of surrounding residues to permit basal receptor activation; because constitutive activity of the Y1-ICL3-MOR chimera was further increased by point mutation at locus 6.34, which did not alter WT-Y1 receptor activity. Our results indicate that the ICL3 stabilizes the Y1 receptor in the inactive state and confers structural properties critical for regulating Y receptor activation and signal transduction. These studies reveal the active participation of the ICL3 in the stabilization and activation of Class I GPCRs. |
doi_str_mv | 10.1074/jbc.M804671200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2662261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820634810</els_id><sourcerecordid>69823546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-f9dad1f33381fe79ea0ac380e4f767820ac6135f34ce711ae7a89090abf1216c3</originalsourceid><addsrcrecordid>eNp1kc2P0zAQxS0EYkvhyhFyQNxSPHbqOBcktOKjUgGJ7UrAxXKcceNVGgc7KYK_HpdULBzwxZrxz8_j9wh5DHQFtCxe3NRm9V7SQpTAKL1DFkAlz_kaPt8lC0oZ5BVbywvyIMYbmlZRwX1yAVIC4yAW5OuuxWzXutBkm34M2mDXTZ0O2db7Ibsade069xNjNiZu02szuiOe-iNm3v7ufsAp-AGH0TWYfYHsE5pU-PCQ3LO6i_jovC_J9ZvXu8t3-fbj283lq21uioqOua0a3YDlnEuwWFaoqTZcUixsKUrJUiWAry0vDJYAGkstK1pRXVtgIAxfkpez7jDVB2wMnv7RqSG4gw4_lNdO_XvSu1bt_VExIRhL2kvy_CwQ_LcJ46gOLp6M0D36KSpRScbXhUjgagZN8DEGtH8eAapOcagUh7qNI1148vdot_jZ_wQ8m4HW7dvvLqCqnTctHhSTXBVSJVt4mbCnM2a1V3ofXFTXV4wCp7AWjHOWCDkTmJw-OgwqGoe9wSaJmlE13v1vyF_Ar68J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69823546</pqid></control><display><type>article</type><title>The Third Intracellular Loop Stabilizes the Inactive State of the Neuropeptide Y1 Receptor</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Chee, Melissa J.S. ; Mörl, Karin ; Lindner, Diana ; Merten, Nicole ; Zamponi, Gerald W. ; Light, Peter E. ; Beck-Sickinger, Annette G. ; Colmers, William F.</creator><creatorcontrib>Chee, Melissa J.S. ; Mörl, Karin ; Lindner, Diana ; Merten, Nicole ; Zamponi, Gerald W. ; Light, Peter E. ; Beck-Sickinger, Annette G. ; Colmers, William F.</creatorcontrib><description>Constitutively active G-protein-coupled receptors (GPCRs) can signal even in the absence of ligand binding. Most Class I GPCRs are stabilized in the resting conformation by intramolecular interactions involving transmembrane domain (TM) 3 and TM6, particularly at loci 6.30 and 6.34 of TM6. Signaling by Gi/Go-coupled receptors such as the Neuropeptide Y1 receptor decreases already low basal metabolite levels. Thus, we examined constitutive activity using a biochemical assay mediated by a Gi/Gq chimeric protein and a more direct electrophysiological assay. Wild-type (WT-Y1) receptors express no measurable, agonist-independent activation, while μ-opioid receptors (MOR) and P2Y12 purinoceptors showed clear evidence of constitutive activation, especially in the electrophysiological assay. Neither point mutations at TM6 (T6.30A or N6.34A) nor substitution of the entire TM3 and TM6 regions from the MOR into the Y1 receptor increased basal WT-Y1 activation. By contrast, chimeric substitution of the third intracellular loop (ICL3) generated a constitutively active, Y1-ICL3-MOR chimera. Furthermore, the loss of stabilizing interactions from the native ICL3 enhanced the role of surrounding residues to permit basal receptor activation; because constitutive activity of the Y1-ICL3-MOR chimera was further increased by point mutation at locus 6.34, which did not alter WT-Y1 receptor activity. Our results indicate that the ICL3 stabilizes the Y1 receptor in the inactive state and confers structural properties critical for regulating Y receptor activation and signal transduction. These studies reveal the active participation of the ICL3 in the stabilization and activation of Class I GPCRs.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M804671200</identifier><identifier>PMID: 18812316</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Chlorocebus aethiops ; COS Cells ; GTP-Binding Protein alpha Subunits, Gi-Go - genetics ; GTP-Binding Protein alpha Subunits, Gi-Go - metabolism ; GTP-Binding Protein alpha Subunits, Gq-G11 - genetics ; GTP-Binding Protein alpha Subunits, Gq-G11 - metabolism ; Humans ; Mechanisms of Signal Transduction ; Point Mutation ; Protein Structure, Secondary - physiology ; Protein Structure, Tertiary - physiology ; Receptors, Neuropeptide Y - genetics ; Receptors, Neuropeptide Y - metabolism ; Receptors, Opioid, mu - genetics ; Receptors, Opioid, mu - metabolism ; Receptors, Purinergic P2 - genetics ; Receptors, Purinergic P2 - metabolism ; Receptors, Purinergic P2Y12 ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Signal Transduction - physiology</subject><ispartof>The Journal of biological chemistry, 2008-11, Vol.283 (48), p.33337-33346</ispartof><rights>2008 © 2008 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Copyright © 2008, The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-f9dad1f33381fe79ea0ac380e4f767820ac6135f34ce711ae7a89090abf1216c3</citedby><cites>FETCH-LOGICAL-c490t-f9dad1f33381fe79ea0ac380e4f767820ac6135f34ce711ae7a89090abf1216c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662261/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662261/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18812316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chee, Melissa J.S.</creatorcontrib><creatorcontrib>Mörl, Karin</creatorcontrib><creatorcontrib>Lindner, Diana</creatorcontrib><creatorcontrib>Merten, Nicole</creatorcontrib><creatorcontrib>Zamponi, Gerald W.</creatorcontrib><creatorcontrib>Light, Peter E.</creatorcontrib><creatorcontrib>Beck-Sickinger, Annette G.</creatorcontrib><creatorcontrib>Colmers, William F.</creatorcontrib><title>The Third Intracellular Loop Stabilizes the Inactive State of the Neuropeptide Y1 Receptor</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Constitutively active G-protein-coupled receptors (GPCRs) can signal even in the absence of ligand binding. Most Class I GPCRs are stabilized in the resting conformation by intramolecular interactions involving transmembrane domain (TM) 3 and TM6, particularly at loci 6.30 and 6.34 of TM6. Signaling by Gi/Go-coupled receptors such as the Neuropeptide Y1 receptor decreases already low basal metabolite levels. Thus, we examined constitutive activity using a biochemical assay mediated by a Gi/Gq chimeric protein and a more direct electrophysiological assay. Wild-type (WT-Y1) receptors express no measurable, agonist-independent activation, while μ-opioid receptors (MOR) and P2Y12 purinoceptors showed clear evidence of constitutive activation, especially in the electrophysiological assay. Neither point mutations at TM6 (T6.30A or N6.34A) nor substitution of the entire TM3 and TM6 regions from the MOR into the Y1 receptor increased basal WT-Y1 activation. By contrast, chimeric substitution of the third intracellular loop (ICL3) generated a constitutively active, Y1-ICL3-MOR chimera. Furthermore, the loss of stabilizing interactions from the native ICL3 enhanced the role of surrounding residues to permit basal receptor activation; because constitutive activity of the Y1-ICL3-MOR chimera was further increased by point mutation at locus 6.34, which did not alter WT-Y1 receptor activity. Our results indicate that the ICL3 stabilizes the Y1 receptor in the inactive state and confers structural properties critical for regulating Y receptor activation and signal transduction. These studies reveal the active participation of the ICL3 in the stabilization and activation of Class I GPCRs.</description><subject>Animals</subject><subject>Chlorocebus aethiops</subject><subject>COS Cells</subject><subject>GTP-Binding Protein alpha Subunits, Gi-Go - genetics</subject><subject>GTP-Binding Protein alpha Subunits, Gi-Go - metabolism</subject><subject>GTP-Binding Protein alpha Subunits, Gq-G11 - genetics</subject><subject>GTP-Binding Protein alpha Subunits, Gq-G11 - metabolism</subject><subject>Humans</subject><subject>Mechanisms of Signal Transduction</subject><subject>Point Mutation</subject><subject>Protein Structure, Secondary - physiology</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Receptors, Neuropeptide Y - genetics</subject><subject>Receptors, Neuropeptide Y - metabolism</subject><subject>Receptors, Opioid, mu - genetics</subject><subject>Receptors, Opioid, mu - metabolism</subject><subject>Receptors, Purinergic P2 - genetics</subject><subject>Receptors, Purinergic P2 - metabolism</subject><subject>Receptors, Purinergic P2Y12</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Signal Transduction - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc2P0zAQxS0EYkvhyhFyQNxSPHbqOBcktOKjUgGJ7UrAxXKcceNVGgc7KYK_HpdULBzwxZrxz8_j9wh5DHQFtCxe3NRm9V7SQpTAKL1DFkAlz_kaPt8lC0oZ5BVbywvyIMYbmlZRwX1yAVIC4yAW5OuuxWzXutBkm34M2mDXTZ0O2db7Ibsade069xNjNiZu02szuiOe-iNm3v7ufsAp-AGH0TWYfYHsE5pU-PCQ3LO6i_jovC_J9ZvXu8t3-fbj283lq21uioqOua0a3YDlnEuwWFaoqTZcUixsKUrJUiWAry0vDJYAGkstK1pRXVtgIAxfkpez7jDVB2wMnv7RqSG4gw4_lNdO_XvSu1bt_VExIRhL2kvy_CwQ_LcJ46gOLp6M0D36KSpRScbXhUjgagZN8DEGtH8eAapOcagUh7qNI1148vdot_jZ_wQ8m4HW7dvvLqCqnTctHhSTXBVSJVt4mbCnM2a1V3ofXFTXV4wCp7AWjHOWCDkTmJw-OgwqGoe9wSaJmlE13v1vyF_Ar68J</recordid><startdate>20081128</startdate><enddate>20081128</enddate><creator>Chee, Melissa J.S.</creator><creator>Mörl, Karin</creator><creator>Lindner, Diana</creator><creator>Merten, Nicole</creator><creator>Zamponi, Gerald W.</creator><creator>Light, Peter E.</creator><creator>Beck-Sickinger, Annette G.</creator><creator>Colmers, William F.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081128</creationdate><title>The Third Intracellular Loop Stabilizes the Inactive State of the Neuropeptide Y1 Receptor</title><author>Chee, Melissa J.S. ; Mörl, Karin ; Lindner, Diana ; Merten, Nicole ; Zamponi, Gerald W. ; Light, Peter E. ; Beck-Sickinger, Annette G. ; Colmers, William F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-f9dad1f33381fe79ea0ac380e4f767820ac6135f34ce711ae7a89090abf1216c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Chlorocebus aethiops</topic><topic>COS Cells</topic><topic>GTP-Binding Protein alpha Subunits, Gi-Go - genetics</topic><topic>GTP-Binding Protein alpha Subunits, Gi-Go - metabolism</topic><topic>GTP-Binding Protein alpha Subunits, Gq-G11 - genetics</topic><topic>GTP-Binding Protein alpha Subunits, Gq-G11 - metabolism</topic><topic>Humans</topic><topic>Mechanisms of Signal Transduction</topic><topic>Point Mutation</topic><topic>Protein Structure, Secondary - physiology</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Receptors, Neuropeptide Y - genetics</topic><topic>Receptors, Neuropeptide Y - metabolism</topic><topic>Receptors, Opioid, mu - genetics</topic><topic>Receptors, Opioid, mu - metabolism</topic><topic>Receptors, Purinergic P2 - genetics</topic><topic>Receptors, Purinergic P2 - metabolism</topic><topic>Receptors, Purinergic P2Y12</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chee, Melissa J.S.</creatorcontrib><creatorcontrib>Mörl, Karin</creatorcontrib><creatorcontrib>Lindner, Diana</creatorcontrib><creatorcontrib>Merten, Nicole</creatorcontrib><creatorcontrib>Zamponi, Gerald W.</creatorcontrib><creatorcontrib>Light, Peter E.</creatorcontrib><creatorcontrib>Beck-Sickinger, Annette G.</creatorcontrib><creatorcontrib>Colmers, William F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chee, Melissa J.S.</au><au>Mörl, Karin</au><au>Lindner, Diana</au><au>Merten, Nicole</au><au>Zamponi, Gerald W.</au><au>Light, Peter E.</au><au>Beck-Sickinger, Annette G.</au><au>Colmers, William F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Third Intracellular Loop Stabilizes the Inactive State of the Neuropeptide Y1 Receptor</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2008-11-28</date><risdate>2008</risdate><volume>283</volume><issue>48</issue><spage>33337</spage><epage>33346</epage><pages>33337-33346</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Constitutively active G-protein-coupled receptors (GPCRs) can signal even in the absence of ligand binding. Most Class I GPCRs are stabilized in the resting conformation by intramolecular interactions involving transmembrane domain (TM) 3 and TM6, particularly at loci 6.30 and 6.34 of TM6. Signaling by Gi/Go-coupled receptors such as the Neuropeptide Y1 receptor decreases already low basal metabolite levels. Thus, we examined constitutive activity using a biochemical assay mediated by a Gi/Gq chimeric protein and a more direct electrophysiological assay. Wild-type (WT-Y1) receptors express no measurable, agonist-independent activation, while μ-opioid receptors (MOR) and P2Y12 purinoceptors showed clear evidence of constitutive activation, especially in the electrophysiological assay. Neither point mutations at TM6 (T6.30A or N6.34A) nor substitution of the entire TM3 and TM6 regions from the MOR into the Y1 receptor increased basal WT-Y1 activation. By contrast, chimeric substitution of the third intracellular loop (ICL3) generated a constitutively active, Y1-ICL3-MOR chimera. Furthermore, the loss of stabilizing interactions from the native ICL3 enhanced the role of surrounding residues to permit basal receptor activation; because constitutive activity of the Y1-ICL3-MOR chimera was further increased by point mutation at locus 6.34, which did not alter WT-Y1 receptor activity. Our results indicate that the ICL3 stabilizes the Y1 receptor in the inactive state and confers structural properties critical for regulating Y receptor activation and signal transduction. These studies reveal the active participation of the ICL3 in the stabilization and activation of Class I GPCRs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18812316</pmid><doi>10.1074/jbc.M804671200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2008-11, Vol.283 (48), p.33337-33346 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2662261 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Chlorocebus aethiops COS Cells GTP-Binding Protein alpha Subunits, Gi-Go - genetics GTP-Binding Protein alpha Subunits, Gi-Go - metabolism GTP-Binding Protein alpha Subunits, Gq-G11 - genetics GTP-Binding Protein alpha Subunits, Gq-G11 - metabolism Humans Mechanisms of Signal Transduction Point Mutation Protein Structure, Secondary - physiology Protein Structure, Tertiary - physiology Receptors, Neuropeptide Y - genetics Receptors, Neuropeptide Y - metabolism Receptors, Opioid, mu - genetics Receptors, Opioid, mu - metabolism Receptors, Purinergic P2 - genetics Receptors, Purinergic P2 - metabolism Receptors, Purinergic P2Y12 Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Signal Transduction - physiology |
title | The Third Intracellular Loop Stabilizes the Inactive State of the Neuropeptide Y1 Receptor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T04%3A20%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Third%20Intracellular%20Loop%20Stabilizes%20the%20Inactive%20State%20of%20the%20Neuropeptide%20Y1%20Receptor&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Chee,%20Melissa%20J.S.&rft.date=2008-11-28&rft.volume=283&rft.issue=48&rft.spage=33337&rft.epage=33346&rft.pages=33337-33346&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M804671200&rft_dat=%3Cproquest_pubme%3E69823546%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69823546&rft_id=info:pmid/18812316&rft_els_id=S0021925820634810&rfr_iscdi=true |