Re-evaluating the Roles of Proposed Modulators of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling
Signaling through mammalian target of rapamycin complex 1 (mTORC1) is stimulated by amino acids and insulin. Insulin inactivates TSC1/2, the GTPase-activator complex for Rheb, and Rheb·GTP activates mTORC1. It is not clear how amino acids regulate mTORC1. FKBP38 (immunophilin FK506-binding protein,...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2008-11, Vol.283 (45), p.30482-30492 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30492 |
---|---|
container_issue | 45 |
container_start_page | 30482 |
container_title | The Journal of biological chemistry |
container_volume | 283 |
creator | Wang, Xuemin Fonseca, Bruno D. Tang, Hua Liu, Rui Elia, Androulla Clemens, Michael J. Bommer, Ulrich-Axel Proud, Christopher G. |
description | Signaling through mammalian target of rapamycin complex 1 (mTORC1) is stimulated by amino acids and insulin. Insulin inactivates TSC1/2, the GTPase-activator complex for Rheb, and Rheb·GTP activates mTORC1. It is not clear how amino acids regulate mTORC1. FKBP38 (immunophilin FK506-binding protein, 38 kDa), was recently reported to exert a negative effect on mTORC1 function that is relieved by its binding to Rheb·GTP. We confirm that Rheb binds wild type FKBP38, but inactive Rheb mutants showed contrasting abilities to bind FKBP38. We were unable to observe any regulation of FKBP38/mTOR binding by amino acids or insulin. Furthermore, FKBP38 did not inhibit mTORC1 signaling. The translationally controlled tumor protein (TCTP) in Drosophila was recently reported to act as the guanine nucleotide-exchange factor for Rheb. We have studied the role of TCTP in mammalian TORC1 signaling and its control by amino acids. Reducing TCTP levels did not reproducibly affect mTORC1 signaling in amino acid-replete/insulin-stimulated cells. Moreover, overexpressing TCTP did not rescue mTORC1 signaling in amino acid-starved cells. In addition, we were unable to see any stable interaction between TCTP and Rheb or mTORC1. Accumulation of uncharged tRNA has been previously proposed to be involved in the inhibition of mTORC1 signaling during amino acid starvation. To test this hypothesis, we used a Chinese hamster ovary cell line containing a temperature-sensitive mutation in leucyl-tRNA synthetase. Leucine deprivation markedly inhibited mTORC1 signaling in these cells, but shifting the cells to the nonpermissive temperature for the synthetase did not. These data indicate that uncharged tRNALeu does not switch off mTORC1 signaling and suggest that mTORC1 is controlled by a distinct pathway that senses the availability of amino acids. Our data also indicate that, in the mammalian cell lines tested here, neither TCTP nor FKBP38 regulates mTORC1 signaling. |
doi_str_mv | 10.1074/jbc.M803348200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2662142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820646191</els_id><sourcerecordid>69742564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-55b497a42815e55f9d9295bfb62d2d3b8ffa3bfe35e7e9f81f5e790686ba805d3</originalsourceid><addsrcrecordid>eNp1kUtv1DAURiMEokNhyxKyQAgWGfyIHWeDhEa8pI6KplOJneU414mrJE7tZKD_Hg8ZUVjgja3rc4-v_CXJc4zWGBX5u5tKr7cCUZoLgtCDZIWRoBll-PvDZIUQwVlJmDhLnoRwg-LKS_w4OcOCF5wWaJV0O8jgoLpZTXZo0qmFdOc6CKkz6TfvRhegTreunjs1Of-7vFV9rzqrhnSvfAPTsbZTo-rvtB3SjevHDn6mOH3T7y93G_w2vbLNEBuG5mnyyKguwLPTfp5cf_q433zJLi4_f918uMg0Y3zKGKvyslA5EZgBY6asS1KyylSc1KSmlTBG0coAZVBAaQQ28VAiLnilBGI1PU_eL95xrnqoNQyTV50cve2Vv5NOWfnvzWBb2biDJJwTnJMoeH0SeHc7Q5hkb4OGrlMDuDlIXhY5YTyP4HoBtXcheDB_HsFIHgOSMSB5H1BsePH3aPf4KZEIvFqA1jbtD-tBVtbpFnpJBJU5kxRFU8ReLphRTqrG2yCvrwjCFGHGGCmOhFgIiD99sOBl0BYGDXWU6knWzv5vyF_JvrTi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69742564</pqid></control><display><type>article</type><title>Re-evaluating the Roles of Proposed Modulators of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wang, Xuemin ; Fonseca, Bruno D. ; Tang, Hua ; Liu, Rui ; Elia, Androulla ; Clemens, Michael J. ; Bommer, Ulrich-Axel ; Proud, Christopher G.</creator><creatorcontrib>Wang, Xuemin ; Fonseca, Bruno D. ; Tang, Hua ; Liu, Rui ; Elia, Androulla ; Clemens, Michael J. ; Bommer, Ulrich-Axel ; Proud, Christopher G.</creatorcontrib><description>Signaling through mammalian target of rapamycin complex 1 (mTORC1) is stimulated by amino acids and insulin. Insulin inactivates TSC1/2, the GTPase-activator complex for Rheb, and Rheb·GTP activates mTORC1. It is not clear how amino acids regulate mTORC1. FKBP38 (immunophilin FK506-binding protein, 38 kDa), was recently reported to exert a negative effect on mTORC1 function that is relieved by its binding to Rheb·GTP. We confirm that Rheb binds wild type FKBP38, but inactive Rheb mutants showed contrasting abilities to bind FKBP38. We were unable to observe any regulation of FKBP38/mTOR binding by amino acids or insulin. Furthermore, FKBP38 did not inhibit mTORC1 signaling. The translationally controlled tumor protein (TCTP) in Drosophila was recently reported to act as the guanine nucleotide-exchange factor for Rheb. We have studied the role of TCTP in mammalian TORC1 signaling and its control by amino acids. Reducing TCTP levels did not reproducibly affect mTORC1 signaling in amino acid-replete/insulin-stimulated cells. Moreover, overexpressing TCTP did not rescue mTORC1 signaling in amino acid-starved cells. In addition, we were unable to see any stable interaction between TCTP and Rheb or mTORC1. Accumulation of uncharged tRNA has been previously proposed to be involved in the inhibition of mTORC1 signaling during amino acid starvation. To test this hypothesis, we used a Chinese hamster ovary cell line containing a temperature-sensitive mutation in leucyl-tRNA synthetase. Leucine deprivation markedly inhibited mTORC1 signaling in these cells, but shifting the cells to the nonpermissive temperature for the synthetase did not. These data indicate that uncharged tRNALeu does not switch off mTORC1 signaling and suggest that mTORC1 is controlled by a distinct pathway that senses the availability of amino acids. Our data also indicate that, in the mammalian cell lines tested here, neither TCTP nor FKBP38 regulates mTORC1 signaling.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M803348200</identifier><identifier>PMID: 18676370</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acids - metabolism ; Amino Acids - pharmacology ; Animals ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; CHO Cells ; Cricetinae ; Cricetulus ; Humans ; Hypoglycemic Agents - metabolism ; Hypoglycemic Agents - pharmacology ; Insulin - metabolism ; Insulin - pharmacology ; Leucine-tRNA Ligase - genetics ; Leucine-tRNA Ligase - metabolism ; Mechanisms of Signal Transduction ; Mechanistic Target of Rapamycin Complex 1 ; Monomeric GTP-Binding Proteins - genetics ; Monomeric GTP-Binding Proteins - metabolism ; Multiprotein Complexes - genetics ; Multiprotein Complexes - metabolism ; Mutation ; Neuropeptides - genetics ; Neuropeptides - metabolism ; Protein Binding - physiology ; Proteins ; Ras Homolog Enriched in Brain Protein ; RNA, Transfer - genetics ; RNA, Transfer - metabolism ; Signal Transduction - physiology ; Tacrolimus Binding Proteins - genetics ; Tacrolimus Binding Proteins - metabolism ; Telomerase - genetics ; Telomerase - metabolism ; TOR Serine-Threonine Kinases ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Tuberous Sclerosis Complex 2 Protein ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism</subject><ispartof>The Journal of biological chemistry, 2008-11, Vol.283 (45), p.30482-30492</ispartof><rights>2008 © 2008 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Copyright © 2008, The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-55b497a42815e55f9d9295bfb62d2d3b8ffa3bfe35e7e9f81f5e790686ba805d3</citedby><cites>FETCH-LOGICAL-c556t-55b497a42815e55f9d9295bfb62d2d3b8ffa3bfe35e7e9f81f5e790686ba805d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662142/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662142/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18676370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xuemin</creatorcontrib><creatorcontrib>Fonseca, Bruno D.</creatorcontrib><creatorcontrib>Tang, Hua</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Elia, Androulla</creatorcontrib><creatorcontrib>Clemens, Michael J.</creatorcontrib><creatorcontrib>Bommer, Ulrich-Axel</creatorcontrib><creatorcontrib>Proud, Christopher G.</creatorcontrib><title>Re-evaluating the Roles of Proposed Modulators of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Signaling through mammalian target of rapamycin complex 1 (mTORC1) is stimulated by amino acids and insulin. Insulin inactivates TSC1/2, the GTPase-activator complex for Rheb, and Rheb·GTP activates mTORC1. It is not clear how amino acids regulate mTORC1. FKBP38 (immunophilin FK506-binding protein, 38 kDa), was recently reported to exert a negative effect on mTORC1 function that is relieved by its binding to Rheb·GTP. We confirm that Rheb binds wild type FKBP38, but inactive Rheb mutants showed contrasting abilities to bind FKBP38. We were unable to observe any regulation of FKBP38/mTOR binding by amino acids or insulin. Furthermore, FKBP38 did not inhibit mTORC1 signaling. The translationally controlled tumor protein (TCTP) in Drosophila was recently reported to act as the guanine nucleotide-exchange factor for Rheb. We have studied the role of TCTP in mammalian TORC1 signaling and its control by amino acids. Reducing TCTP levels did not reproducibly affect mTORC1 signaling in amino acid-replete/insulin-stimulated cells. Moreover, overexpressing TCTP did not rescue mTORC1 signaling in amino acid-starved cells. In addition, we were unable to see any stable interaction between TCTP and Rheb or mTORC1. Accumulation of uncharged tRNA has been previously proposed to be involved in the inhibition of mTORC1 signaling during amino acid starvation. To test this hypothesis, we used a Chinese hamster ovary cell line containing a temperature-sensitive mutation in leucyl-tRNA synthetase. Leucine deprivation markedly inhibited mTORC1 signaling in these cells, but shifting the cells to the nonpermissive temperature for the synthetase did not. These data indicate that uncharged tRNALeu does not switch off mTORC1 signaling and suggest that mTORC1 is controlled by a distinct pathway that senses the availability of amino acids. Our data also indicate that, in the mammalian cell lines tested here, neither TCTP nor FKBP38 regulates mTORC1 signaling.</description><subject>Amino Acids - metabolism</subject><subject>Amino Acids - pharmacology</subject><subject>Animals</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Humans</subject><subject>Hypoglycemic Agents - metabolism</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Insulin - metabolism</subject><subject>Insulin - pharmacology</subject><subject>Leucine-tRNA Ligase - genetics</subject><subject>Leucine-tRNA Ligase - metabolism</subject><subject>Mechanisms of Signal Transduction</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Monomeric GTP-Binding Proteins - genetics</subject><subject>Monomeric GTP-Binding Proteins - metabolism</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Mutation</subject><subject>Neuropeptides - genetics</subject><subject>Neuropeptides - metabolism</subject><subject>Protein Binding - physiology</subject><subject>Proteins</subject><subject>Ras Homolog Enriched in Brain Protein</subject><subject>RNA, Transfer - genetics</subject><subject>RNA, Transfer - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Tacrolimus Binding Proteins - genetics</subject><subject>Tacrolimus Binding Proteins - metabolism</subject><subject>Telomerase - genetics</subject><subject>Telomerase - metabolism</subject><subject>TOR Serine-Threonine Kinases</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Tuberous Sclerosis Complex 2 Protein</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtv1DAURiMEokNhyxKyQAgWGfyIHWeDhEa8pI6KplOJneU414mrJE7tZKD_Hg8ZUVjgja3rc4-v_CXJc4zWGBX5u5tKr7cCUZoLgtCDZIWRoBll-PvDZIUQwVlJmDhLnoRwg-LKS_w4OcOCF5wWaJV0O8jgoLpZTXZo0qmFdOc6CKkz6TfvRhegTreunjs1Of-7vFV9rzqrhnSvfAPTsbZTo-rvtB3SjevHDn6mOH3T7y93G_w2vbLNEBuG5mnyyKguwLPTfp5cf_q433zJLi4_f918uMg0Y3zKGKvyslA5EZgBY6asS1KyylSc1KSmlTBG0coAZVBAaQQ28VAiLnilBGI1PU_eL95xrnqoNQyTV50cve2Vv5NOWfnvzWBb2biDJJwTnJMoeH0SeHc7Q5hkb4OGrlMDuDlIXhY5YTyP4HoBtXcheDB_HsFIHgOSMSB5H1BsePH3aPf4KZEIvFqA1jbtD-tBVtbpFnpJBJU5kxRFU8ReLphRTqrG2yCvrwjCFGHGGCmOhFgIiD99sOBl0BYGDXWU6knWzv5vyF_JvrTi</recordid><startdate>20081107</startdate><enddate>20081107</enddate><creator>Wang, Xuemin</creator><creator>Fonseca, Bruno D.</creator><creator>Tang, Hua</creator><creator>Liu, Rui</creator><creator>Elia, Androulla</creator><creator>Clemens, Michael J.</creator><creator>Bommer, Ulrich-Axel</creator><creator>Proud, Christopher G.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081107</creationdate><title>Re-evaluating the Roles of Proposed Modulators of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling</title><author>Wang, Xuemin ; Fonseca, Bruno D. ; Tang, Hua ; Liu, Rui ; Elia, Androulla ; Clemens, Michael J. ; Bommer, Ulrich-Axel ; Proud, Christopher G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-55b497a42815e55f9d9295bfb62d2d3b8ffa3bfe35e7e9f81f5e790686ba805d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amino Acids - metabolism</topic><topic>Amino Acids - pharmacology</topic><topic>Animals</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Humans</topic><topic>Hypoglycemic Agents - metabolism</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Insulin - metabolism</topic><topic>Insulin - pharmacology</topic><topic>Leucine-tRNA Ligase - genetics</topic><topic>Leucine-tRNA Ligase - metabolism</topic><topic>Mechanisms of Signal Transduction</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Monomeric GTP-Binding Proteins - genetics</topic><topic>Monomeric GTP-Binding Proteins - metabolism</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Mutation</topic><topic>Neuropeptides - genetics</topic><topic>Neuropeptides - metabolism</topic><topic>Protein Binding - physiology</topic><topic>Proteins</topic><topic>Ras Homolog Enriched in Brain Protein</topic><topic>RNA, Transfer - genetics</topic><topic>RNA, Transfer - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Tacrolimus Binding Proteins - genetics</topic><topic>Tacrolimus Binding Proteins - metabolism</topic><topic>Telomerase - genetics</topic><topic>Telomerase - metabolism</topic><topic>TOR Serine-Threonine Kinases</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Tuberous Sclerosis Complex 2 Protein</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuemin</creatorcontrib><creatorcontrib>Fonseca, Bruno D.</creatorcontrib><creatorcontrib>Tang, Hua</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Elia, Androulla</creatorcontrib><creatorcontrib>Clemens, Michael J.</creatorcontrib><creatorcontrib>Bommer, Ulrich-Axel</creatorcontrib><creatorcontrib>Proud, Christopher G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xuemin</au><au>Fonseca, Bruno D.</au><au>Tang, Hua</au><au>Liu, Rui</au><au>Elia, Androulla</au><au>Clemens, Michael J.</au><au>Bommer, Ulrich-Axel</au><au>Proud, Christopher G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Re-evaluating the Roles of Proposed Modulators of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2008-11-07</date><risdate>2008</risdate><volume>283</volume><issue>45</issue><spage>30482</spage><epage>30492</epage><pages>30482-30492</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Signaling through mammalian target of rapamycin complex 1 (mTORC1) is stimulated by amino acids and insulin. Insulin inactivates TSC1/2, the GTPase-activator complex for Rheb, and Rheb·GTP activates mTORC1. It is not clear how amino acids regulate mTORC1. FKBP38 (immunophilin FK506-binding protein, 38 kDa), was recently reported to exert a negative effect on mTORC1 function that is relieved by its binding to Rheb·GTP. We confirm that Rheb binds wild type FKBP38, but inactive Rheb mutants showed contrasting abilities to bind FKBP38. We were unable to observe any regulation of FKBP38/mTOR binding by amino acids or insulin. Furthermore, FKBP38 did not inhibit mTORC1 signaling. The translationally controlled tumor protein (TCTP) in Drosophila was recently reported to act as the guanine nucleotide-exchange factor for Rheb. We have studied the role of TCTP in mammalian TORC1 signaling and its control by amino acids. Reducing TCTP levels did not reproducibly affect mTORC1 signaling in amino acid-replete/insulin-stimulated cells. Moreover, overexpressing TCTP did not rescue mTORC1 signaling in amino acid-starved cells. In addition, we were unable to see any stable interaction between TCTP and Rheb or mTORC1. Accumulation of uncharged tRNA has been previously proposed to be involved in the inhibition of mTORC1 signaling during amino acid starvation. To test this hypothesis, we used a Chinese hamster ovary cell line containing a temperature-sensitive mutation in leucyl-tRNA synthetase. Leucine deprivation markedly inhibited mTORC1 signaling in these cells, but shifting the cells to the nonpermissive temperature for the synthetase did not. These data indicate that uncharged tRNALeu does not switch off mTORC1 signaling and suggest that mTORC1 is controlled by a distinct pathway that senses the availability of amino acids. Our data also indicate that, in the mammalian cell lines tested here, neither TCTP nor FKBP38 regulates mTORC1 signaling.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18676370</pmid><doi>10.1074/jbc.M803348200</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2008-11, Vol.283 (45), p.30482-30492 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2662142 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Amino Acids - metabolism Amino Acids - pharmacology Animals Biomarkers, Tumor - genetics Biomarkers, Tumor - metabolism CHO Cells Cricetinae Cricetulus Humans Hypoglycemic Agents - metabolism Hypoglycemic Agents - pharmacology Insulin - metabolism Insulin - pharmacology Leucine-tRNA Ligase - genetics Leucine-tRNA Ligase - metabolism Mechanisms of Signal Transduction Mechanistic Target of Rapamycin Complex 1 Monomeric GTP-Binding Proteins - genetics Monomeric GTP-Binding Proteins - metabolism Multiprotein Complexes - genetics Multiprotein Complexes - metabolism Mutation Neuropeptides - genetics Neuropeptides - metabolism Protein Binding - physiology Proteins Ras Homolog Enriched in Brain Protein RNA, Transfer - genetics RNA, Transfer - metabolism Signal Transduction - physiology Tacrolimus Binding Proteins - genetics Tacrolimus Binding Proteins - metabolism Telomerase - genetics Telomerase - metabolism TOR Serine-Threonine Kinases Transcription Factors - genetics Transcription Factors - metabolism Tuberous Sclerosis Complex 2 Protein Tumor Suppressor Proteins - genetics Tumor Suppressor Proteins - metabolism |
title | Re-evaluating the Roles of Proposed Modulators of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Re-evaluating%20the%20Roles%20of%20Proposed%20Modulators%20of%20Mammalian%20Target%20of%20Rapamycin%20Complex%201%20(mTORC1)%20Signaling&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Wang,%20Xuemin&rft.date=2008-11-07&rft.volume=283&rft.issue=45&rft.spage=30482&rft.epage=30492&rft.pages=30482-30492&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M803348200&rft_dat=%3Cproquest_pubme%3E69742564%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69742564&rft_id=info:pmid/18676370&rft_els_id=S0021925820646191&rfr_iscdi=true |