Re-evaluating the Roles of Proposed Modulators of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling

Signaling through mammalian target of rapamycin complex 1 (mTORC1) is stimulated by amino acids and insulin. Insulin inactivates TSC1/2, the GTPase-activator complex for Rheb, and Rheb·GTP activates mTORC1. It is not clear how amino acids regulate mTORC1. FKBP38 (immunophilin FK506-binding protein,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2008-11, Vol.283 (45), p.30482-30492
Hauptverfasser: Wang, Xuemin, Fonseca, Bruno D., Tang, Hua, Liu, Rui, Elia, Androulla, Clemens, Michael J., Bommer, Ulrich-Axel, Proud, Christopher G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30492
container_issue 45
container_start_page 30482
container_title The Journal of biological chemistry
container_volume 283
creator Wang, Xuemin
Fonseca, Bruno D.
Tang, Hua
Liu, Rui
Elia, Androulla
Clemens, Michael J.
Bommer, Ulrich-Axel
Proud, Christopher G.
description Signaling through mammalian target of rapamycin complex 1 (mTORC1) is stimulated by amino acids and insulin. Insulin inactivates TSC1/2, the GTPase-activator complex for Rheb, and Rheb·GTP activates mTORC1. It is not clear how amino acids regulate mTORC1. FKBP38 (immunophilin FK506-binding protein, 38 kDa), was recently reported to exert a negative effect on mTORC1 function that is relieved by its binding to Rheb·GTP. We confirm that Rheb binds wild type FKBP38, but inactive Rheb mutants showed contrasting abilities to bind FKBP38. We were unable to observe any regulation of FKBP38/mTOR binding by amino acids or insulin. Furthermore, FKBP38 did not inhibit mTORC1 signaling. The translationally controlled tumor protein (TCTP) in Drosophila was recently reported to act as the guanine nucleotide-exchange factor for Rheb. We have studied the role of TCTP in mammalian TORC1 signaling and its control by amino acids. Reducing TCTP levels did not reproducibly affect mTORC1 signaling in amino acid-replete/insulin-stimulated cells. Moreover, overexpressing TCTP did not rescue mTORC1 signaling in amino acid-starved cells. In addition, we were unable to see any stable interaction between TCTP and Rheb or mTORC1. Accumulation of uncharged tRNA has been previously proposed to be involved in the inhibition of mTORC1 signaling during amino acid starvation. To test this hypothesis, we used a Chinese hamster ovary cell line containing a temperature-sensitive mutation in leucyl-tRNA synthetase. Leucine deprivation markedly inhibited mTORC1 signaling in these cells, but shifting the cells to the nonpermissive temperature for the synthetase did not. These data indicate that uncharged tRNALeu does not switch off mTORC1 signaling and suggest that mTORC1 is controlled by a distinct pathway that senses the availability of amino acids. Our data also indicate that, in the mammalian cell lines tested here, neither TCTP nor FKBP38 regulates mTORC1 signaling.
doi_str_mv 10.1074/jbc.M803348200
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2662142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820646191</els_id><sourcerecordid>69742564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-55b497a42815e55f9d9295bfb62d2d3b8ffa3bfe35e7e9f81f5e790686ba805d3</originalsourceid><addsrcrecordid>eNp1kUtv1DAURiMEokNhyxKyQAgWGfyIHWeDhEa8pI6KplOJneU414mrJE7tZKD_Hg8ZUVjgja3rc4-v_CXJc4zWGBX5u5tKr7cCUZoLgtCDZIWRoBll-PvDZIUQwVlJmDhLnoRwg-LKS_w4OcOCF5wWaJV0O8jgoLpZTXZo0qmFdOc6CKkz6TfvRhegTreunjs1Of-7vFV9rzqrhnSvfAPTsbZTo-rvtB3SjevHDn6mOH3T7y93G_w2vbLNEBuG5mnyyKguwLPTfp5cf_q433zJLi4_f918uMg0Y3zKGKvyslA5EZgBY6asS1KyylSc1KSmlTBG0coAZVBAaQQ28VAiLnilBGI1PU_eL95xrnqoNQyTV50cve2Vv5NOWfnvzWBb2biDJJwTnJMoeH0SeHc7Q5hkb4OGrlMDuDlIXhY5YTyP4HoBtXcheDB_HsFIHgOSMSB5H1BsePH3aPf4KZEIvFqA1jbtD-tBVtbpFnpJBJU5kxRFU8ReLphRTqrG2yCvrwjCFGHGGCmOhFgIiD99sOBl0BYGDXWU6knWzv5vyF_JvrTi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69742564</pqid></control><display><type>article</type><title>Re-evaluating the Roles of Proposed Modulators of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wang, Xuemin ; Fonseca, Bruno D. ; Tang, Hua ; Liu, Rui ; Elia, Androulla ; Clemens, Michael J. ; Bommer, Ulrich-Axel ; Proud, Christopher G.</creator><creatorcontrib>Wang, Xuemin ; Fonseca, Bruno D. ; Tang, Hua ; Liu, Rui ; Elia, Androulla ; Clemens, Michael J. ; Bommer, Ulrich-Axel ; Proud, Christopher G.</creatorcontrib><description>Signaling through mammalian target of rapamycin complex 1 (mTORC1) is stimulated by amino acids and insulin. Insulin inactivates TSC1/2, the GTPase-activator complex for Rheb, and Rheb·GTP activates mTORC1. It is not clear how amino acids regulate mTORC1. FKBP38 (immunophilin FK506-binding protein, 38 kDa), was recently reported to exert a negative effect on mTORC1 function that is relieved by its binding to Rheb·GTP. We confirm that Rheb binds wild type FKBP38, but inactive Rheb mutants showed contrasting abilities to bind FKBP38. We were unable to observe any regulation of FKBP38/mTOR binding by amino acids or insulin. Furthermore, FKBP38 did not inhibit mTORC1 signaling. The translationally controlled tumor protein (TCTP) in Drosophila was recently reported to act as the guanine nucleotide-exchange factor for Rheb. We have studied the role of TCTP in mammalian TORC1 signaling and its control by amino acids. Reducing TCTP levels did not reproducibly affect mTORC1 signaling in amino acid-replete/insulin-stimulated cells. Moreover, overexpressing TCTP did not rescue mTORC1 signaling in amino acid-starved cells. In addition, we were unable to see any stable interaction between TCTP and Rheb or mTORC1. Accumulation of uncharged tRNA has been previously proposed to be involved in the inhibition of mTORC1 signaling during amino acid starvation. To test this hypothesis, we used a Chinese hamster ovary cell line containing a temperature-sensitive mutation in leucyl-tRNA synthetase. Leucine deprivation markedly inhibited mTORC1 signaling in these cells, but shifting the cells to the nonpermissive temperature for the synthetase did not. These data indicate that uncharged tRNALeu does not switch off mTORC1 signaling and suggest that mTORC1 is controlled by a distinct pathway that senses the availability of amino acids. Our data also indicate that, in the mammalian cell lines tested here, neither TCTP nor FKBP38 regulates mTORC1 signaling.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M803348200</identifier><identifier>PMID: 18676370</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acids - metabolism ; Amino Acids - pharmacology ; Animals ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; CHO Cells ; Cricetinae ; Cricetulus ; Humans ; Hypoglycemic Agents - metabolism ; Hypoglycemic Agents - pharmacology ; Insulin - metabolism ; Insulin - pharmacology ; Leucine-tRNA Ligase - genetics ; Leucine-tRNA Ligase - metabolism ; Mechanisms of Signal Transduction ; Mechanistic Target of Rapamycin Complex 1 ; Monomeric GTP-Binding Proteins - genetics ; Monomeric GTP-Binding Proteins - metabolism ; Multiprotein Complexes - genetics ; Multiprotein Complexes - metabolism ; Mutation ; Neuropeptides - genetics ; Neuropeptides - metabolism ; Protein Binding - physiology ; Proteins ; Ras Homolog Enriched in Brain Protein ; RNA, Transfer - genetics ; RNA, Transfer - metabolism ; Signal Transduction - physiology ; Tacrolimus Binding Proteins - genetics ; Tacrolimus Binding Proteins - metabolism ; Telomerase - genetics ; Telomerase - metabolism ; TOR Serine-Threonine Kinases ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Tuberous Sclerosis Complex 2 Protein ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism</subject><ispartof>The Journal of biological chemistry, 2008-11, Vol.283 (45), p.30482-30492</ispartof><rights>2008 © 2008 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Copyright © 2008, The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-55b497a42815e55f9d9295bfb62d2d3b8ffa3bfe35e7e9f81f5e790686ba805d3</citedby><cites>FETCH-LOGICAL-c556t-55b497a42815e55f9d9295bfb62d2d3b8ffa3bfe35e7e9f81f5e790686ba805d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662142/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662142/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18676370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xuemin</creatorcontrib><creatorcontrib>Fonseca, Bruno D.</creatorcontrib><creatorcontrib>Tang, Hua</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Elia, Androulla</creatorcontrib><creatorcontrib>Clemens, Michael J.</creatorcontrib><creatorcontrib>Bommer, Ulrich-Axel</creatorcontrib><creatorcontrib>Proud, Christopher G.</creatorcontrib><title>Re-evaluating the Roles of Proposed Modulators of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Signaling through mammalian target of rapamycin complex 1 (mTORC1) is stimulated by amino acids and insulin. Insulin inactivates TSC1/2, the GTPase-activator complex for Rheb, and Rheb·GTP activates mTORC1. It is not clear how amino acids regulate mTORC1. FKBP38 (immunophilin FK506-binding protein, 38 kDa), was recently reported to exert a negative effect on mTORC1 function that is relieved by its binding to Rheb·GTP. We confirm that Rheb binds wild type FKBP38, but inactive Rheb mutants showed contrasting abilities to bind FKBP38. We were unable to observe any regulation of FKBP38/mTOR binding by amino acids or insulin. Furthermore, FKBP38 did not inhibit mTORC1 signaling. The translationally controlled tumor protein (TCTP) in Drosophila was recently reported to act as the guanine nucleotide-exchange factor for Rheb. We have studied the role of TCTP in mammalian TORC1 signaling and its control by amino acids. Reducing TCTP levels did not reproducibly affect mTORC1 signaling in amino acid-replete/insulin-stimulated cells. Moreover, overexpressing TCTP did not rescue mTORC1 signaling in amino acid-starved cells. In addition, we were unable to see any stable interaction between TCTP and Rheb or mTORC1. Accumulation of uncharged tRNA has been previously proposed to be involved in the inhibition of mTORC1 signaling during amino acid starvation. To test this hypothesis, we used a Chinese hamster ovary cell line containing a temperature-sensitive mutation in leucyl-tRNA synthetase. Leucine deprivation markedly inhibited mTORC1 signaling in these cells, but shifting the cells to the nonpermissive temperature for the synthetase did not. These data indicate that uncharged tRNALeu does not switch off mTORC1 signaling and suggest that mTORC1 is controlled by a distinct pathway that senses the availability of amino acids. Our data also indicate that, in the mammalian cell lines tested here, neither TCTP nor FKBP38 regulates mTORC1 signaling.</description><subject>Amino Acids - metabolism</subject><subject>Amino Acids - pharmacology</subject><subject>Animals</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Humans</subject><subject>Hypoglycemic Agents - metabolism</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Insulin - metabolism</subject><subject>Insulin - pharmacology</subject><subject>Leucine-tRNA Ligase - genetics</subject><subject>Leucine-tRNA Ligase - metabolism</subject><subject>Mechanisms of Signal Transduction</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Monomeric GTP-Binding Proteins - genetics</subject><subject>Monomeric GTP-Binding Proteins - metabolism</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Mutation</subject><subject>Neuropeptides - genetics</subject><subject>Neuropeptides - metabolism</subject><subject>Protein Binding - physiology</subject><subject>Proteins</subject><subject>Ras Homolog Enriched in Brain Protein</subject><subject>RNA, Transfer - genetics</subject><subject>RNA, Transfer - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Tacrolimus Binding Proteins - genetics</subject><subject>Tacrolimus Binding Proteins - metabolism</subject><subject>Telomerase - genetics</subject><subject>Telomerase - metabolism</subject><subject>TOR Serine-Threonine Kinases</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Tuberous Sclerosis Complex 2 Protein</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtv1DAURiMEokNhyxKyQAgWGfyIHWeDhEa8pI6KplOJneU414mrJE7tZKD_Hg8ZUVjgja3rc4-v_CXJc4zWGBX5u5tKr7cCUZoLgtCDZIWRoBll-PvDZIUQwVlJmDhLnoRwg-LKS_w4OcOCF5wWaJV0O8jgoLpZTXZo0qmFdOc6CKkz6TfvRhegTreunjs1Of-7vFV9rzqrhnSvfAPTsbZTo-rvtB3SjevHDn6mOH3T7y93G_w2vbLNEBuG5mnyyKguwLPTfp5cf_q433zJLi4_f918uMg0Y3zKGKvyslA5EZgBY6asS1KyylSc1KSmlTBG0coAZVBAaQQ28VAiLnilBGI1PU_eL95xrnqoNQyTV50cve2Vv5NOWfnvzWBb2biDJJwTnJMoeH0SeHc7Q5hkb4OGrlMDuDlIXhY5YTyP4HoBtXcheDB_HsFIHgOSMSB5H1BsePH3aPf4KZEIvFqA1jbtD-tBVtbpFnpJBJU5kxRFU8ReLphRTqrG2yCvrwjCFGHGGCmOhFgIiD99sOBl0BYGDXWU6knWzv5vyF_JvrTi</recordid><startdate>20081107</startdate><enddate>20081107</enddate><creator>Wang, Xuemin</creator><creator>Fonseca, Bruno D.</creator><creator>Tang, Hua</creator><creator>Liu, Rui</creator><creator>Elia, Androulla</creator><creator>Clemens, Michael J.</creator><creator>Bommer, Ulrich-Axel</creator><creator>Proud, Christopher G.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081107</creationdate><title>Re-evaluating the Roles of Proposed Modulators of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling</title><author>Wang, Xuemin ; Fonseca, Bruno D. ; Tang, Hua ; Liu, Rui ; Elia, Androulla ; Clemens, Michael J. ; Bommer, Ulrich-Axel ; Proud, Christopher G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-55b497a42815e55f9d9295bfb62d2d3b8ffa3bfe35e7e9f81f5e790686ba805d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amino Acids - metabolism</topic><topic>Amino Acids - pharmacology</topic><topic>Animals</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Humans</topic><topic>Hypoglycemic Agents - metabolism</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Insulin - metabolism</topic><topic>Insulin - pharmacology</topic><topic>Leucine-tRNA Ligase - genetics</topic><topic>Leucine-tRNA Ligase - metabolism</topic><topic>Mechanisms of Signal Transduction</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Monomeric GTP-Binding Proteins - genetics</topic><topic>Monomeric GTP-Binding Proteins - metabolism</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Mutation</topic><topic>Neuropeptides - genetics</topic><topic>Neuropeptides - metabolism</topic><topic>Protein Binding - physiology</topic><topic>Proteins</topic><topic>Ras Homolog Enriched in Brain Protein</topic><topic>RNA, Transfer - genetics</topic><topic>RNA, Transfer - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Tacrolimus Binding Proteins - genetics</topic><topic>Tacrolimus Binding Proteins - metabolism</topic><topic>Telomerase - genetics</topic><topic>Telomerase - metabolism</topic><topic>TOR Serine-Threonine Kinases</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Tuberous Sclerosis Complex 2 Protein</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuemin</creatorcontrib><creatorcontrib>Fonseca, Bruno D.</creatorcontrib><creatorcontrib>Tang, Hua</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Elia, Androulla</creatorcontrib><creatorcontrib>Clemens, Michael J.</creatorcontrib><creatorcontrib>Bommer, Ulrich-Axel</creatorcontrib><creatorcontrib>Proud, Christopher G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xuemin</au><au>Fonseca, Bruno D.</au><au>Tang, Hua</au><au>Liu, Rui</au><au>Elia, Androulla</au><au>Clemens, Michael J.</au><au>Bommer, Ulrich-Axel</au><au>Proud, Christopher G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Re-evaluating the Roles of Proposed Modulators of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2008-11-07</date><risdate>2008</risdate><volume>283</volume><issue>45</issue><spage>30482</spage><epage>30492</epage><pages>30482-30492</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Signaling through mammalian target of rapamycin complex 1 (mTORC1) is stimulated by amino acids and insulin. Insulin inactivates TSC1/2, the GTPase-activator complex for Rheb, and Rheb·GTP activates mTORC1. It is not clear how amino acids regulate mTORC1. FKBP38 (immunophilin FK506-binding protein, 38 kDa), was recently reported to exert a negative effect on mTORC1 function that is relieved by its binding to Rheb·GTP. We confirm that Rheb binds wild type FKBP38, but inactive Rheb mutants showed contrasting abilities to bind FKBP38. We were unable to observe any regulation of FKBP38/mTOR binding by amino acids or insulin. Furthermore, FKBP38 did not inhibit mTORC1 signaling. The translationally controlled tumor protein (TCTP) in Drosophila was recently reported to act as the guanine nucleotide-exchange factor for Rheb. We have studied the role of TCTP in mammalian TORC1 signaling and its control by amino acids. Reducing TCTP levels did not reproducibly affect mTORC1 signaling in amino acid-replete/insulin-stimulated cells. Moreover, overexpressing TCTP did not rescue mTORC1 signaling in amino acid-starved cells. In addition, we were unable to see any stable interaction between TCTP and Rheb or mTORC1. Accumulation of uncharged tRNA has been previously proposed to be involved in the inhibition of mTORC1 signaling during amino acid starvation. To test this hypothesis, we used a Chinese hamster ovary cell line containing a temperature-sensitive mutation in leucyl-tRNA synthetase. Leucine deprivation markedly inhibited mTORC1 signaling in these cells, but shifting the cells to the nonpermissive temperature for the synthetase did not. These data indicate that uncharged tRNALeu does not switch off mTORC1 signaling and suggest that mTORC1 is controlled by a distinct pathway that senses the availability of amino acids. Our data also indicate that, in the mammalian cell lines tested here, neither TCTP nor FKBP38 regulates mTORC1 signaling.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18676370</pmid><doi>10.1074/jbc.M803348200</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2008-11, Vol.283 (45), p.30482-30492
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2662142
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Amino Acids - metabolism
Amino Acids - pharmacology
Animals
Biomarkers, Tumor - genetics
Biomarkers, Tumor - metabolism
CHO Cells
Cricetinae
Cricetulus
Humans
Hypoglycemic Agents - metabolism
Hypoglycemic Agents - pharmacology
Insulin - metabolism
Insulin - pharmacology
Leucine-tRNA Ligase - genetics
Leucine-tRNA Ligase - metabolism
Mechanisms of Signal Transduction
Mechanistic Target of Rapamycin Complex 1
Monomeric GTP-Binding Proteins - genetics
Monomeric GTP-Binding Proteins - metabolism
Multiprotein Complexes - genetics
Multiprotein Complexes - metabolism
Mutation
Neuropeptides - genetics
Neuropeptides - metabolism
Protein Binding - physiology
Proteins
Ras Homolog Enriched in Brain Protein
RNA, Transfer - genetics
RNA, Transfer - metabolism
Signal Transduction - physiology
Tacrolimus Binding Proteins - genetics
Tacrolimus Binding Proteins - metabolism
Telomerase - genetics
Telomerase - metabolism
TOR Serine-Threonine Kinases
Transcription Factors - genetics
Transcription Factors - metabolism
Tuberous Sclerosis Complex 2 Protein
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - metabolism
title Re-evaluating the Roles of Proposed Modulators of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Re-evaluating%20the%20Roles%20of%20Proposed%20Modulators%20of%20Mammalian%20Target%20of%20Rapamycin%20Complex%201%20(mTORC1)%20Signaling&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Wang,%20Xuemin&rft.date=2008-11-07&rft.volume=283&rft.issue=45&rft.spage=30482&rft.epage=30492&rft.pages=30482-30492&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M803348200&rft_dat=%3Cproquest_pubme%3E69742564%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69742564&rft_id=info:pmid/18676370&rft_els_id=S0021925820646191&rfr_iscdi=true