Structural Insight into the Bifunctional Mechanism of the Glycogen-debranching Enzyme TreX from the Archaeon Sulfolobus solfataricus

TreX is an archaeal glycogen-debranching enzyme that exists in two oligomeric states in solution, as a dimer and tetramer. Unlike its homologs, TreX from Sulfolobus solfataricus shows dual activities for α-1,4-transferase and α-1,6-glucosidase. To understand this bifunctional mechanism, we determine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2008-10, Vol.283 (42), p.28641-28648
Hauptverfasser: Woo, Eui-Jeon, Lee, Seungjae, Cha, Hyunju, Park, Jong-Tae, Yoon, Sei-Mee, Song, Hyung-Nam, Park, Kwan-Hwa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28648
container_issue 42
container_start_page 28641
container_title The Journal of biological chemistry
container_volume 283
creator Woo, Eui-Jeon
Lee, Seungjae
Cha, Hyunju
Park, Jong-Tae
Yoon, Sei-Mee
Song, Hyung-Nam
Park, Kwan-Hwa
description TreX is an archaeal glycogen-debranching enzyme that exists in two oligomeric states in solution, as a dimer and tetramer. Unlike its homologs, TreX from Sulfolobus solfataricus shows dual activities for α-1,4-transferase and α-1,6-glucosidase. To understand this bifunctional mechanism, we determined the crystal structure of TreX in complex with an acarbose ligand. The acarbose intermediate was covalently bound to Asp363, occupying subsites -1 to -3. Although generally similar to the monomeric structure of isoamylase, TreX exhibits two different active-site configurations depending on its oligomeric state. The N terminus of one subunit is located at the active site of the other molecule, resulting in a reshaping of the active site in the tetramer. This is accompanied by a large shift in the “flexible loop” (amino acids 399-416), creating connected holes inside the tetramer. Mutations in the N-terminal region result in a sharp increase in α-1,4-transferase activity and a reduced level of α-1,6-glucosidase activity. On the basis of geometrical analysis of the active site and mutational study, we suggest that the structural lid (acids 99-97) at the active site generated by the tetramerization is closely associated with the bifunctionality and in particular with the α-1,4-transferase activity. These results provide a structural basis for the modulation of activities upon TreX oligomerization that may represent a common mode of action for other glycogen-debranching enzymes in higher organisms.
doi_str_mv 10.1074/jbc.M802560200
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2661413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820642600</els_id><sourcerecordid>S0021925820642600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-4d1df704a9ba33711a29c240ed52a2500b1a50ef0c8b1ded001446e74a0cacef3</originalsourceid><addsrcrecordid>eNp1kb1vFDEQxS0EIsdBSwlb0O4x9nq_GqQkSkKkRBSXSOksr3d862jXjmxv0FHzh8fJRgQK3Ewxv_dmPI-QjxQ2FGr-9bZTm8sGWFkBA3hFVhSaIi9KevOarAAYzVtWNgfkXQi3kB5v6VtyQJsaEtOsyO9t9LOKs5djdm6D2Q0xMza6LA6YHRk9WxWNs6l7iWqQ1oQpc_qpezbulduhzXvsvLRqMHaXndhf-wmzK483mfZueiIPfZKis9l2HrUbXTeHLLhRyyi9UXN4T95oOQb88FzX5Pr05Or4e37x4-z8-PAiV7xsY8572usauGw7WRQ1pZK1inHAvmSSlQAdlSWgBtV0tMcegHJeYc0lKKlQF2vybfG9m7sJe4U2pn-LO28m6ffCSSP-7VgziJ27F6yqKKdFMtgsBsq7EDzqP1oK4jEPkfIQL3kkwae_J77gzwEk4MsCDOn0P41H0RmnBpwEawrBWSpVmrwmnxdMSyfkzpsgrrcMaAG05DXnj6s1C4HpgPcGvQjKoFXYJ1MVRe_M_5Z8AHI0sqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Insight into the Bifunctional Mechanism of the Glycogen-debranching Enzyme TreX from the Archaeon Sulfolobus solfataricus</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Woo, Eui-Jeon ; Lee, Seungjae ; Cha, Hyunju ; Park, Jong-Tae ; Yoon, Sei-Mee ; Song, Hyung-Nam ; Park, Kwan-Hwa</creator><creatorcontrib>Woo, Eui-Jeon ; Lee, Seungjae ; Cha, Hyunju ; Park, Jong-Tae ; Yoon, Sei-Mee ; Song, Hyung-Nam ; Park, Kwan-Hwa</creatorcontrib><description>TreX is an archaeal glycogen-debranching enzyme that exists in two oligomeric states in solution, as a dimer and tetramer. Unlike its homologs, TreX from Sulfolobus solfataricus shows dual activities for α-1,4-transferase and α-1,6-glucosidase. To understand this bifunctional mechanism, we determined the crystal structure of TreX in complex with an acarbose ligand. The acarbose intermediate was covalently bound to Asp363, occupying subsites -1 to -3. Although generally similar to the monomeric structure of isoamylase, TreX exhibits two different active-site configurations depending on its oligomeric state. The N terminus of one subunit is located at the active site of the other molecule, resulting in a reshaping of the active site in the tetramer. This is accompanied by a large shift in the “flexible loop” (amino acids 399-416), creating connected holes inside the tetramer. Mutations in the N-terminal region result in a sharp increase in α-1,4-transferase activity and a reduced level of α-1,6-glucosidase activity. On the basis of geometrical analysis of the active site and mutational study, we suggest that the structural lid (acids 99-97) at the active site generated by the tetramerization is closely associated with the bifunctionality and in particular with the α-1,4-transferase activity. These results provide a structural basis for the modulation of activities upon TreX oligomerization that may represent a common mode of action for other glycogen-debranching enzymes in higher organisms.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M802560200</identifier><identifier>PMID: 18703518</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acarbose - chemistry ; Amino Acid Sequence ; Aspartic Acid - chemistry ; Catalytic Domain ; DNA Mutational Analysis ; Exodeoxyribonucleases - chemistry ; Glycogen - chemistry ; Glycogen Debranching Enzyme System - chemistry ; Hydrogen-Ion Concentration ; Molecular Conformation ; Molecular Sequence Data ; Mutation ; Phosphoproteins - chemistry ; Protein Conformation ; Protein Structure and Folding ; Protein Structure, Tertiary ; Sequence Homology, Amino Acid ; Sulfolobus solfataricus - metabolism</subject><ispartof>The Journal of biological chemistry, 2008-10, Vol.283 (42), p.28641-28648</ispartof><rights>2008 © 2008 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Copyright © 2008, The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-4d1df704a9ba33711a29c240ed52a2500b1a50ef0c8b1ded001446e74a0cacef3</citedby><cites>FETCH-LOGICAL-c459t-4d1df704a9ba33711a29c240ed52a2500b1a50ef0c8b1ded001446e74a0cacef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661413/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661413/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18703518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Woo, Eui-Jeon</creatorcontrib><creatorcontrib>Lee, Seungjae</creatorcontrib><creatorcontrib>Cha, Hyunju</creatorcontrib><creatorcontrib>Park, Jong-Tae</creatorcontrib><creatorcontrib>Yoon, Sei-Mee</creatorcontrib><creatorcontrib>Song, Hyung-Nam</creatorcontrib><creatorcontrib>Park, Kwan-Hwa</creatorcontrib><title>Structural Insight into the Bifunctional Mechanism of the Glycogen-debranching Enzyme TreX from the Archaeon Sulfolobus solfataricus</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>TreX is an archaeal glycogen-debranching enzyme that exists in two oligomeric states in solution, as a dimer and tetramer. Unlike its homologs, TreX from Sulfolobus solfataricus shows dual activities for α-1,4-transferase and α-1,6-glucosidase. To understand this bifunctional mechanism, we determined the crystal structure of TreX in complex with an acarbose ligand. The acarbose intermediate was covalently bound to Asp363, occupying subsites -1 to -3. Although generally similar to the monomeric structure of isoamylase, TreX exhibits two different active-site configurations depending on its oligomeric state. The N terminus of one subunit is located at the active site of the other molecule, resulting in a reshaping of the active site in the tetramer. This is accompanied by a large shift in the “flexible loop” (amino acids 399-416), creating connected holes inside the tetramer. Mutations in the N-terminal region result in a sharp increase in α-1,4-transferase activity and a reduced level of α-1,6-glucosidase activity. On the basis of geometrical analysis of the active site and mutational study, we suggest that the structural lid (acids 99-97) at the active site generated by the tetramerization is closely associated with the bifunctionality and in particular with the α-1,4-transferase activity. These results provide a structural basis for the modulation of activities upon TreX oligomerization that may represent a common mode of action for other glycogen-debranching enzymes in higher organisms.</description><subject>Acarbose - chemistry</subject><subject>Amino Acid Sequence</subject><subject>Aspartic Acid - chemistry</subject><subject>Catalytic Domain</subject><subject>DNA Mutational Analysis</subject><subject>Exodeoxyribonucleases - chemistry</subject><subject>Glycogen - chemistry</subject><subject>Glycogen Debranching Enzyme System - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Molecular Conformation</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Phosphoproteins - chemistry</subject><subject>Protein Conformation</subject><subject>Protein Structure and Folding</subject><subject>Protein Structure, Tertiary</subject><subject>Sequence Homology, Amino Acid</subject><subject>Sulfolobus solfataricus - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kb1vFDEQxS0EIsdBSwlb0O4x9nq_GqQkSkKkRBSXSOksr3d862jXjmxv0FHzh8fJRgQK3Ewxv_dmPI-QjxQ2FGr-9bZTm8sGWFkBA3hFVhSaIi9KevOarAAYzVtWNgfkXQi3kB5v6VtyQJsaEtOsyO9t9LOKs5djdm6D2Q0xMza6LA6YHRk9WxWNs6l7iWqQ1oQpc_qpezbulduhzXvsvLRqMHaXndhf-wmzK483mfZueiIPfZKis9l2HrUbXTeHLLhRyyi9UXN4T95oOQb88FzX5Pr05Or4e37x4-z8-PAiV7xsY8572usauGw7WRQ1pZK1inHAvmSSlQAdlSWgBtV0tMcegHJeYc0lKKlQF2vybfG9m7sJe4U2pn-LO28m6ffCSSP-7VgziJ27F6yqKKdFMtgsBsq7EDzqP1oK4jEPkfIQL3kkwae_J77gzwEk4MsCDOn0P41H0RmnBpwEawrBWSpVmrwmnxdMSyfkzpsgrrcMaAG05DXnj6s1C4HpgPcGvQjKoFXYJ1MVRe_M_5Z8AHI0sqw</recordid><startdate>20081017</startdate><enddate>20081017</enddate><creator>Woo, Eui-Jeon</creator><creator>Lee, Seungjae</creator><creator>Cha, Hyunju</creator><creator>Park, Jong-Tae</creator><creator>Yoon, Sei-Mee</creator><creator>Song, Hyung-Nam</creator><creator>Park, Kwan-Hwa</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20081017</creationdate><title>Structural Insight into the Bifunctional Mechanism of the Glycogen-debranching Enzyme TreX from the Archaeon Sulfolobus solfataricus</title><author>Woo, Eui-Jeon ; Lee, Seungjae ; Cha, Hyunju ; Park, Jong-Tae ; Yoon, Sei-Mee ; Song, Hyung-Nam ; Park, Kwan-Hwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-4d1df704a9ba33711a29c240ed52a2500b1a50ef0c8b1ded001446e74a0cacef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acarbose - chemistry</topic><topic>Amino Acid Sequence</topic><topic>Aspartic Acid - chemistry</topic><topic>Catalytic Domain</topic><topic>DNA Mutational Analysis</topic><topic>Exodeoxyribonucleases - chemistry</topic><topic>Glycogen - chemistry</topic><topic>Glycogen Debranching Enzyme System - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Molecular Conformation</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Phosphoproteins - chemistry</topic><topic>Protein Conformation</topic><topic>Protein Structure and Folding</topic><topic>Protein Structure, Tertiary</topic><topic>Sequence Homology, Amino Acid</topic><topic>Sulfolobus solfataricus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woo, Eui-Jeon</creatorcontrib><creatorcontrib>Lee, Seungjae</creatorcontrib><creatorcontrib>Cha, Hyunju</creatorcontrib><creatorcontrib>Park, Jong-Tae</creatorcontrib><creatorcontrib>Yoon, Sei-Mee</creatorcontrib><creatorcontrib>Song, Hyung-Nam</creatorcontrib><creatorcontrib>Park, Kwan-Hwa</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woo, Eui-Jeon</au><au>Lee, Seungjae</au><au>Cha, Hyunju</au><au>Park, Jong-Tae</au><au>Yoon, Sei-Mee</au><au>Song, Hyung-Nam</au><au>Park, Kwan-Hwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Insight into the Bifunctional Mechanism of the Glycogen-debranching Enzyme TreX from the Archaeon Sulfolobus solfataricus</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2008-10-17</date><risdate>2008</risdate><volume>283</volume><issue>42</issue><spage>28641</spage><epage>28648</epage><pages>28641-28648</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>TreX is an archaeal glycogen-debranching enzyme that exists in two oligomeric states in solution, as a dimer and tetramer. Unlike its homologs, TreX from Sulfolobus solfataricus shows dual activities for α-1,4-transferase and α-1,6-glucosidase. To understand this bifunctional mechanism, we determined the crystal structure of TreX in complex with an acarbose ligand. The acarbose intermediate was covalently bound to Asp363, occupying subsites -1 to -3. Although generally similar to the monomeric structure of isoamylase, TreX exhibits two different active-site configurations depending on its oligomeric state. The N terminus of one subunit is located at the active site of the other molecule, resulting in a reshaping of the active site in the tetramer. This is accompanied by a large shift in the “flexible loop” (amino acids 399-416), creating connected holes inside the tetramer. Mutations in the N-terminal region result in a sharp increase in α-1,4-transferase activity and a reduced level of α-1,6-glucosidase activity. On the basis of geometrical analysis of the active site and mutational study, we suggest that the structural lid (acids 99-97) at the active site generated by the tetramerization is closely associated with the bifunctionality and in particular with the α-1,4-transferase activity. These results provide a structural basis for the modulation of activities upon TreX oligomerization that may represent a common mode of action for other glycogen-debranching enzymes in higher organisms.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18703518</pmid><doi>10.1074/jbc.M802560200</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2008-10, Vol.283 (42), p.28641-28648
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2661413
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Acarbose - chemistry
Amino Acid Sequence
Aspartic Acid - chemistry
Catalytic Domain
DNA Mutational Analysis
Exodeoxyribonucleases - chemistry
Glycogen - chemistry
Glycogen Debranching Enzyme System - chemistry
Hydrogen-Ion Concentration
Molecular Conformation
Molecular Sequence Data
Mutation
Phosphoproteins - chemistry
Protein Conformation
Protein Structure and Folding
Protein Structure, Tertiary
Sequence Homology, Amino Acid
Sulfolobus solfataricus - metabolism
title Structural Insight into the Bifunctional Mechanism of the Glycogen-debranching Enzyme TreX from the Archaeon Sulfolobus solfataricus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Insight%20into%20the%20Bifunctional%20Mechanism%20of%20the%20Glycogen-debranching%20Enzyme%20TreX%20from%20the%20Archaeon%20Sulfolobus%20solfataricus&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Woo,%20Eui-Jeon&rft.date=2008-10-17&rft.volume=283&rft.issue=42&rft.spage=28641&rft.epage=28648&rft.pages=28641-28648&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M802560200&rft_dat=%3Celsevier_pubme%3ES0021925820642600%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18703518&rft_els_id=S0021925820642600&rfr_iscdi=true