A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome

In many species, a dosage compensation complex (DCC) is targeted to X chromosomes of one sex to equalize levels of X-gene products between males (1X) and females (2X). Here we identify cis-acting regulatory elements that target the Caenorhabditis elegans X chromosome for repression by the DCC. The D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 2009-03, Vol.23 (5), p.602-618
Hauptverfasser: Jans, Judith, Gladden, John M, Ralston, Edward J, Pickle, Catherine S, Michel, Agnès H, Pferdehirt, Rebecca R, Eisen, Michael B, Meyer, Barbara J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 618
container_issue 5
container_start_page 602
container_title Genes & development
container_volume 23
creator Jans, Judith
Gladden, John M
Ralston, Edward J
Pickle, Catherine S
Michel, Agnès H
Pferdehirt, Rebecca R
Eisen, Michael B
Meyer, Barbara J
description In many species, a dosage compensation complex (DCC) is targeted to X chromosomes of one sex to equalize levels of X-gene products between males (1X) and females (2X). Here we identify cis-acting regulatory elements that target the Caenorhabditis elegans X chromosome for repression by the DCC. The DCC binds to discrete, dispersed sites on X of two types. rex sites (recruitment elements on X) recruit the DCC in an autonomous, DNA sequence-dependent manner using a 12-base-pair (bp) consensus motif that is enriched on X. This motif is critical for DCC binding, is clustered in rex sites, and confers much of X-chromosome specificity. Motif variants enriched on X by 3.8-fold or more are highly predictive (95%) for rex sites. In contrast, dox sites (dependent on X) lack the X-enriched variants and cannot bind the DCC when detached from X. dox sites are more prevalent than rex sites and, unlike rex sites, reside preferentially in promoters of some expressed genes. These findings fulfill predictions for a targeting model in which the DCC binds to recruitment sites on X and disperses to discrete sites lacking autonomous recruitment ability. To relate DCC binding to function, we identified dosage-compensated and noncompensated genes on X. Unexpectedly, many genes of both types have bound DCC, but many do not, suggesting the DCC acts over long distances to repress X-gene expression. Remarkably, the DCC binds to autosomes, but at far fewer sites and rarely at consensus motifs. DCC disruption causes opposite effects on expression of X and autosomal genes. The DCC thus acts at a distance to impact expression throughout the genome.
doi_str_mv 10.1101/gad.1751109
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2658519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67001909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-a02b8279006c82d130f864ae7f26fe39c6279c6229fe95498651ff86c16c0b8f3</originalsourceid><addsrcrecordid>eNpVkUlPwzAQhS0EoqVw4o584oJSxlmc-IKEKjapEhc4W64zSUOTuMQOKv8eh0YsF3s88_n5WY-QcwZzxoBdlyqfszTxtTggU5bEIkjiND0kU8gEBCLiYkJOrH0DAA6cH5MJE2EKjMOUbG6pNm2Ora3aoK42SHNjVYm-22x9V7nKtN-HGndUaWepclTRvLJOtRqpM4OA60xNcbft0Nrhglt3pi_Xpne-RFpiaxo8JUeFqi2ejfuMvN7fvSweg-Xzw9PidhnoOE5coCBcZWEqvFudhTmLoMh4rDAtQl5gJDT3Q7-EokDhf5vxhBUe0YxrWGVFNCM3e91tv2ow1-jtqVpuu6pR3ac0qpL_J221lqX5kCFPsoQJL3A5CnTmvUfrZFNZjXWtWjS9lTwFYAIG8GoP6s5Y22Hx8wgDOYQjfThyDMfTF399_bJjGtEXFwiNBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67001909</pqid></control><display><type>article</type><title>A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Jans, Judith ; Gladden, John M ; Ralston, Edward J ; Pickle, Catherine S ; Michel, Agnès H ; Pferdehirt, Rebecca R ; Eisen, Michael B ; Meyer, Barbara J</creator><creatorcontrib>Jans, Judith ; Gladden, John M ; Ralston, Edward J ; Pickle, Catherine S ; Michel, Agnès H ; Pferdehirt, Rebecca R ; Eisen, Michael B ; Meyer, Barbara J</creatorcontrib><description>In many species, a dosage compensation complex (DCC) is targeted to X chromosomes of one sex to equalize levels of X-gene products between males (1X) and females (2X). Here we identify cis-acting regulatory elements that target the Caenorhabditis elegans X chromosome for repression by the DCC. The DCC binds to discrete, dispersed sites on X of two types. rex sites (recruitment elements on X) recruit the DCC in an autonomous, DNA sequence-dependent manner using a 12-base-pair (bp) consensus motif that is enriched on X. This motif is critical for DCC binding, is clustered in rex sites, and confers much of X-chromosome specificity. Motif variants enriched on X by 3.8-fold or more are highly predictive (95%) for rex sites. In contrast, dox sites (dependent on X) lack the X-enriched variants and cannot bind the DCC when detached from X. dox sites are more prevalent than rex sites and, unlike rex sites, reside preferentially in promoters of some expressed genes. These findings fulfill predictions for a targeting model in which the DCC binds to recruitment sites on X and disperses to discrete sites lacking autonomous recruitment ability. To relate DCC binding to function, we identified dosage-compensated and noncompensated genes on X. Unexpectedly, many genes of both types have bound DCC, but many do not, suggesting the DCC acts over long distances to repress X-gene expression. Remarkably, the DCC binds to autosomes, but at far fewer sites and rarely at consensus motifs. DCC disruption causes opposite effects on expression of X and autosomal genes. The DCC thus acts at a distance to impact expression throughout the genome.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.1751109</identifier><identifier>PMID: 19270160</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Adenosine Triphosphatases - metabolism ; Animals ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans - physiology ; Caenorhabditis elegans Proteins - metabolism ; Consensus Sequence - genetics ; DNA-Binding Proteins - metabolism ; Dosage Compensation, Genetic - physiology ; Female ; Gene Expression Regulation, Developmental ; Genome, Helminth - genetics ; Genome, Helminth - physiology ; Male ; Multiprotein Complexes - metabolism ; Protein Binding ; Regulatory Elements, Transcriptional ; Research Paper ; X Chromosome - genetics ; X Chromosome - metabolism</subject><ispartof>Genes &amp; development, 2009-03, Vol.23 (5), p.602-618</ispartof><rights>Copyright © 2009 by Cold Spring Harbor Laboratory Press 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-a02b8279006c82d130f864ae7f26fe39c6279c6229fe95498651ff86c16c0b8f3</citedby><cites>FETCH-LOGICAL-c445t-a02b8279006c82d130f864ae7f26fe39c6279c6229fe95498651ff86c16c0b8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658519/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658519/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19270160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jans, Judith</creatorcontrib><creatorcontrib>Gladden, John M</creatorcontrib><creatorcontrib>Ralston, Edward J</creatorcontrib><creatorcontrib>Pickle, Catherine S</creatorcontrib><creatorcontrib>Michel, Agnès H</creatorcontrib><creatorcontrib>Pferdehirt, Rebecca R</creatorcontrib><creatorcontrib>Eisen, Michael B</creatorcontrib><creatorcontrib>Meyer, Barbara J</creatorcontrib><title>A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome</title><title>Genes &amp; development</title><addtitle>Genes Dev</addtitle><description>In many species, a dosage compensation complex (DCC) is targeted to X chromosomes of one sex to equalize levels of X-gene products between males (1X) and females (2X). Here we identify cis-acting regulatory elements that target the Caenorhabditis elegans X chromosome for repression by the DCC. The DCC binds to discrete, dispersed sites on X of two types. rex sites (recruitment elements on X) recruit the DCC in an autonomous, DNA sequence-dependent manner using a 12-base-pair (bp) consensus motif that is enriched on X. This motif is critical for DCC binding, is clustered in rex sites, and confers much of X-chromosome specificity. Motif variants enriched on X by 3.8-fold or more are highly predictive (95%) for rex sites. In contrast, dox sites (dependent on X) lack the X-enriched variants and cannot bind the DCC when detached from X. dox sites are more prevalent than rex sites and, unlike rex sites, reside preferentially in promoters of some expressed genes. These findings fulfill predictions for a targeting model in which the DCC binds to recruitment sites on X and disperses to discrete sites lacking autonomous recruitment ability. To relate DCC binding to function, we identified dosage-compensated and noncompensated genes on X. Unexpectedly, many genes of both types have bound DCC, but many do not, suggesting the DCC acts over long distances to repress X-gene expression. Remarkably, the DCC binds to autosomes, but at far fewer sites and rarely at consensus motifs. DCC disruption causes opposite effects on expression of X and autosomal genes. The DCC thus acts at a distance to impact expression throughout the genome.</description><subject>Adenosine Triphosphatases - metabolism</subject><subject>Animals</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Consensus Sequence - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Dosage Compensation, Genetic - physiology</subject><subject>Female</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genome, Helminth - genetics</subject><subject>Genome, Helminth - physiology</subject><subject>Male</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Protein Binding</subject><subject>Regulatory Elements, Transcriptional</subject><subject>Research Paper</subject><subject>X Chromosome - genetics</subject><subject>X Chromosome - metabolism</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUlPwzAQhS0EoqVw4o584oJSxlmc-IKEKjapEhc4W64zSUOTuMQOKv8eh0YsF3s88_n5WY-QcwZzxoBdlyqfszTxtTggU5bEIkjiND0kU8gEBCLiYkJOrH0DAA6cH5MJE2EKjMOUbG6pNm2Ora3aoK42SHNjVYm-22x9V7nKtN-HGndUaWepclTRvLJOtRqpM4OA60xNcbft0Nrhglt3pi_Xpne-RFpiaxo8JUeFqi2ejfuMvN7fvSweg-Xzw9PidhnoOE5coCBcZWEqvFudhTmLoMh4rDAtQl5gJDT3Q7-EokDhf5vxhBUe0YxrWGVFNCM3e91tv2ow1-jtqVpuu6pR3ac0qpL_J221lqX5kCFPsoQJL3A5CnTmvUfrZFNZjXWtWjS9lTwFYAIG8GoP6s5Y22Hx8wgDOYQjfThyDMfTF399_bJjGtEXFwiNBQ</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Jans, Judith</creator><creator>Gladden, John M</creator><creator>Ralston, Edward J</creator><creator>Pickle, Catherine S</creator><creator>Michel, Agnès H</creator><creator>Pferdehirt, Rebecca R</creator><creator>Eisen, Michael B</creator><creator>Meyer, Barbara J</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090301</creationdate><title>A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome</title><author>Jans, Judith ; Gladden, John M ; Ralston, Edward J ; Pickle, Catherine S ; Michel, Agnès H ; Pferdehirt, Rebecca R ; Eisen, Michael B ; Meyer, Barbara J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-a02b8279006c82d130f864ae7f26fe39c6279c6229fe95498651ff86c16c0b8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adenosine Triphosphatases - metabolism</topic><topic>Animals</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Consensus Sequence - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Dosage Compensation, Genetic - physiology</topic><topic>Female</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genome, Helminth - genetics</topic><topic>Genome, Helminth - physiology</topic><topic>Male</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Protein Binding</topic><topic>Regulatory Elements, Transcriptional</topic><topic>Research Paper</topic><topic>X Chromosome - genetics</topic><topic>X Chromosome - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jans, Judith</creatorcontrib><creatorcontrib>Gladden, John M</creatorcontrib><creatorcontrib>Ralston, Edward J</creatorcontrib><creatorcontrib>Pickle, Catherine S</creatorcontrib><creatorcontrib>Michel, Agnès H</creatorcontrib><creatorcontrib>Pferdehirt, Rebecca R</creatorcontrib><creatorcontrib>Eisen, Michael B</creatorcontrib><creatorcontrib>Meyer, Barbara J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jans, Judith</au><au>Gladden, John M</au><au>Ralston, Edward J</au><au>Pickle, Catherine S</au><au>Michel, Agnès H</au><au>Pferdehirt, Rebecca R</au><au>Eisen, Michael B</au><au>Meyer, Barbara J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome</atitle><jtitle>Genes &amp; development</jtitle><addtitle>Genes Dev</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>23</volume><issue>5</issue><spage>602</spage><epage>618</epage><pages>602-618</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><abstract>In many species, a dosage compensation complex (DCC) is targeted to X chromosomes of one sex to equalize levels of X-gene products between males (1X) and females (2X). Here we identify cis-acting regulatory elements that target the Caenorhabditis elegans X chromosome for repression by the DCC. The DCC binds to discrete, dispersed sites on X of two types. rex sites (recruitment elements on X) recruit the DCC in an autonomous, DNA sequence-dependent manner using a 12-base-pair (bp) consensus motif that is enriched on X. This motif is critical for DCC binding, is clustered in rex sites, and confers much of X-chromosome specificity. Motif variants enriched on X by 3.8-fold or more are highly predictive (95%) for rex sites. In contrast, dox sites (dependent on X) lack the X-enriched variants and cannot bind the DCC when detached from X. dox sites are more prevalent than rex sites and, unlike rex sites, reside preferentially in promoters of some expressed genes. These findings fulfill predictions for a targeting model in which the DCC binds to recruitment sites on X and disperses to discrete sites lacking autonomous recruitment ability. To relate DCC binding to function, we identified dosage-compensated and noncompensated genes on X. Unexpectedly, many genes of both types have bound DCC, but many do not, suggesting the DCC acts over long distances to repress X-gene expression. Remarkably, the DCC binds to autosomes, but at far fewer sites and rarely at consensus motifs. DCC disruption causes opposite effects on expression of X and autosomal genes. The DCC thus acts at a distance to impact expression throughout the genome.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>19270160</pmid><doi>10.1101/gad.1751109</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-9369
ispartof Genes & development, 2009-03, Vol.23 (5), p.602-618
issn 0890-9369
1549-5477
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2658519
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adenosine Triphosphatases - metabolism
Animals
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
Caenorhabditis elegans - physiology
Caenorhabditis elegans Proteins - metabolism
Consensus Sequence - genetics
DNA-Binding Proteins - metabolism
Dosage Compensation, Genetic - physiology
Female
Gene Expression Regulation, Developmental
Genome, Helminth - genetics
Genome, Helminth - physiology
Male
Multiprotein Complexes - metabolism
Protein Binding
Regulatory Elements, Transcriptional
Research Paper
X Chromosome - genetics
X Chromosome - metabolism
title A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A40%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20condensin-like%20dosage%20compensation%20complex%20acts%20at%20a%20distance%20to%20control%20expression%20throughout%20the%20genome&rft.jtitle=Genes%20&%20development&rft.au=Jans,%20Judith&rft.date=2009-03-01&rft.volume=23&rft.issue=5&rft.spage=602&rft.epage=618&rft.pages=602-618&rft.issn=0890-9369&rft.eissn=1549-5477&rft_id=info:doi/10.1101/gad.1751109&rft_dat=%3Cproquest_pubme%3E67001909%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67001909&rft_id=info:pmid/19270160&rfr_iscdi=true