SUG-1 Plays Proteolytic and Non-proteolytic Roles in the Control of Retinoic Acid Target Genes via Its Interaction with SRC-3

Nuclear retinoic acid receptor α (RARα) activates gene expression through dynamic interactions with coregulatory protein complexes, the assembly of which is directed by the ligand and the AF-2 domain of RARα. Then RARα and its coactivator SRC-3 are degraded by the proteasome. Recently it has emerged...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2009-03, Vol.284 (12), p.8127-8135
Hauptverfasser: Ferry, Christine, Gianni, Maurizio, Lalevée, Sébastien, Bruck, Nathalie, Plassat, Jean-Luc, Raska, Ivan, Garattini, Enrico, Rochette-Egly, Cécile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8135
container_issue 12
container_start_page 8127
container_title The Journal of biological chemistry
container_volume 284
creator Ferry, Christine
Gianni, Maurizio
Lalevée, Sébastien
Bruck, Nathalie
Plassat, Jean-Luc
Raska, Ivan
Garattini, Enrico
Rochette-Egly, Cécile
description Nuclear retinoic acid receptor α (RARα) activates gene expression through dynamic interactions with coregulatory protein complexes, the assembly of which is directed by the ligand and the AF-2 domain of RARα. Then RARα and its coactivator SRC-3 are degraded by the proteasome. Recently it has emerged that the proteasome also plays a key role in RARα-mediated transcription. Here we show that SUG-1, one of the six ATPases of the 19 S regulatory complex of the 26 S proteasome, interacts with SRC-3, is recruited at the promoters of retinoic acid (RA) target genes, and thereby participates to their transcription. In addition, SUG-1 also mediates the proteasomal degradation of SRC-3. However, when present in excess amounts, SUG-1 blocks the activation of RARα target genes and the degradation of RARα that occurs in response to RA, via its ability to interfere with the recruitment of SRC-3 and other coregulators at the AF-2 domain of RARα. We propose a model in which the ratio between SUG-1 and SRC-3 is crucial for the control of RARα functioning. This study provides new insights into how SUG-1 has a unique role in linking the transcription and degradation processes via its ability to interact with SRC-3.
doi_str_mv 10.1074/jbc.M808815200
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2658106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820325254</els_id><sourcerecordid>21083335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-29da51fbe1ee772d62cb602292902ee97b5550f8d6c847a9f202f8d543fda8813</originalsourceid><addsrcrecordid>eNp1kc-LEzEUxwdR3HX16lEDgien5sdkJnMRStFuoerSbsFbyGTedLJMk5qkXXrwfzelxV0Fcwl5-bzv-ybfLHtN8Ijgqvh41-jRV4GFIJxi_CS7JFiwnHHy42l2iTEleU25uMhehHCH0ypq8jy7IDUpirIoLrNfy9U0J-hmUIeAbryL4IZDNBop26JvzubbR7WFGyAgY1HsAU2cjd4NyHVoAdFYl4CxNi26VX4NEU3BJnhvFJrFgGY2glc6GmfRvYk9Wi4mOXuZPevUEODVeb_KVl8-306u8_n36Wwynuea8yrmtG4VJ10DBKCqaFtS3ZSY0prWmALUVcM5x51oSy2KStUdxTSdeMG6VqWvYVfZp5PudtdsoNWQrKtBbr3ZKH-QThn59401vVy7vaQlFwSXSeDDSaD_p-16PJfGBvAbiTETjLFif5z3_jzPu587CFFuTNAwDMqC2wVJjykxxhM4OoHauxA8dH_ECZbHgGUKWD4EnBrePH7JA35ONAHvzk7Nur83HmRjnO5hI6koJKFSEFol6u2J6pSTau1NkKslxYRhUmJeFiwR4kRAymVvwMugDVgNbdLUUbbO_M_jbwwkyQE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21083335</pqid></control><display><type>article</type><title>SUG-1 Plays Proteolytic and Non-proteolytic Roles in the Control of Retinoic Acid Target Genes via Its Interaction with SRC-3</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Ferry, Christine ; Gianni, Maurizio ; Lalevée, Sébastien ; Bruck, Nathalie ; Plassat, Jean-Luc ; Raska, Ivan ; Garattini, Enrico ; Rochette-Egly, Cécile</creator><creatorcontrib>Ferry, Christine ; Gianni, Maurizio ; Lalevée, Sébastien ; Bruck, Nathalie ; Plassat, Jean-Luc ; Raska, Ivan ; Garattini, Enrico ; Rochette-Egly, Cécile</creatorcontrib><description>Nuclear retinoic acid receptor α (RARα) activates gene expression through dynamic interactions with coregulatory protein complexes, the assembly of which is directed by the ligand and the AF-2 domain of RARα. Then RARα and its coactivator SRC-3 are degraded by the proteasome. Recently it has emerged that the proteasome also plays a key role in RARα-mediated transcription. Here we show that SUG-1, one of the six ATPases of the 19 S regulatory complex of the 26 S proteasome, interacts with SRC-3, is recruited at the promoters of retinoic acid (RA) target genes, and thereby participates to their transcription. In addition, SUG-1 also mediates the proteasomal degradation of SRC-3. However, when present in excess amounts, SUG-1 blocks the activation of RARα target genes and the degradation of RARα that occurs in response to RA, via its ability to interfere with the recruitment of SRC-3 and other coregulators at the AF-2 domain of RARα. We propose a model in which the ratio between SUG-1 and SRC-3 is crucial for the control of RARα functioning. This study provides new insights into how SUG-1 has a unique role in linking the transcription and degradation processes via its ability to interact with SRC-3.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M808815200</identifier><identifier>PMID: 19144644</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Animals ; ATPases Associated with Diverse Cellular Activities ; Chlorocebus aethiops ; COS Cells ; Gene Expression Regulation - drug effects ; Gene Expression Regulation - physiology ; HeLa Cells ; Histone Acetyltransferases - genetics ; Histone Acetyltransferases - metabolism ; Humans ; LIM Domain Proteins ; Models, Biological ; Nuclear Receptor Coactivator 3 ; Proteasome Endopeptidase Complex - metabolism ; Protein Structure, Tertiary - physiology ; Protein Synthesis, Post-Translational Modification, and Degradation ; Receptors, Retinoic Acid - genetics ; Receptors, Retinoic Acid - metabolism ; Retinoic Acid Receptor alpha ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic - drug effects ; Transcription, Genetic - physiology ; Tretinoin - pharmacology</subject><ispartof>The Journal of biological chemistry, 2009-03, Vol.284 (12), p.8127-8135</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2009, The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-29da51fbe1ee772d62cb602292902ee97b5550f8d6c847a9f202f8d543fda8813</citedby><cites>FETCH-LOGICAL-c557t-29da51fbe1ee772d62cb602292902ee97b5550f8d6c847a9f202f8d543fda8813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658106/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658106/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19144644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00383334$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferry, Christine</creatorcontrib><creatorcontrib>Gianni, Maurizio</creatorcontrib><creatorcontrib>Lalevée, Sébastien</creatorcontrib><creatorcontrib>Bruck, Nathalie</creatorcontrib><creatorcontrib>Plassat, Jean-Luc</creatorcontrib><creatorcontrib>Raska, Ivan</creatorcontrib><creatorcontrib>Garattini, Enrico</creatorcontrib><creatorcontrib>Rochette-Egly, Cécile</creatorcontrib><title>SUG-1 Plays Proteolytic and Non-proteolytic Roles in the Control of Retinoic Acid Target Genes via Its Interaction with SRC-3</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Nuclear retinoic acid receptor α (RARα) activates gene expression through dynamic interactions with coregulatory protein complexes, the assembly of which is directed by the ligand and the AF-2 domain of RARα. Then RARα and its coactivator SRC-3 are degraded by the proteasome. Recently it has emerged that the proteasome also plays a key role in RARα-mediated transcription. Here we show that SUG-1, one of the six ATPases of the 19 S regulatory complex of the 26 S proteasome, interacts with SRC-3, is recruited at the promoters of retinoic acid (RA) target genes, and thereby participates to their transcription. In addition, SUG-1 also mediates the proteasomal degradation of SRC-3. However, when present in excess amounts, SUG-1 blocks the activation of RARα target genes and the degradation of RARα that occurs in response to RA, via its ability to interfere with the recruitment of SRC-3 and other coregulators at the AF-2 domain of RARα. We propose a model in which the ratio between SUG-1 and SRC-3 is crucial for the control of RARα functioning. This study provides new insights into how SUG-1 has a unique role in linking the transcription and degradation processes via its ability to interact with SRC-3.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Animals</subject><subject>ATPases Associated with Diverse Cellular Activities</subject><subject>Chlorocebus aethiops</subject><subject>COS Cells</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Expression Regulation - physiology</subject><subject>HeLa Cells</subject><subject>Histone Acetyltransferases - genetics</subject><subject>Histone Acetyltransferases - metabolism</subject><subject>Humans</subject><subject>LIM Domain Proteins</subject><subject>Models, Biological</subject><subject>Nuclear Receptor Coactivator 3</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Protein Synthesis, Post-Translational Modification, and Degradation</subject><subject>Receptors, Retinoic Acid - genetics</subject><subject>Receptors, Retinoic Acid - metabolism</subject><subject>Retinoic Acid Receptor alpha</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic - drug effects</subject><subject>Transcription, Genetic - physiology</subject><subject>Tretinoin - pharmacology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc-LEzEUxwdR3HX16lEDgien5sdkJnMRStFuoerSbsFbyGTedLJMk5qkXXrwfzelxV0Fcwl5-bzv-ybfLHtN8Ijgqvh41-jRV4GFIJxi_CS7JFiwnHHy42l2iTEleU25uMhehHCH0ypq8jy7IDUpirIoLrNfy9U0J-hmUIeAbryL4IZDNBop26JvzubbR7WFGyAgY1HsAU2cjd4NyHVoAdFYl4CxNi26VX4NEU3BJnhvFJrFgGY2glc6GmfRvYk9Wi4mOXuZPevUEODVeb_KVl8-306u8_n36Wwynuea8yrmtG4VJ10DBKCqaFtS3ZSY0prWmALUVcM5x51oSy2KStUdxTSdeMG6VqWvYVfZp5PudtdsoNWQrKtBbr3ZKH-QThn59401vVy7vaQlFwSXSeDDSaD_p-16PJfGBvAbiTETjLFif5z3_jzPu587CFFuTNAwDMqC2wVJjykxxhM4OoHauxA8dH_ECZbHgGUKWD4EnBrePH7JA35ONAHvzk7Nur83HmRjnO5hI6koJKFSEFol6u2J6pSTau1NkKslxYRhUmJeFiwR4kRAymVvwMugDVgNbdLUUbbO_M_jbwwkyQE</recordid><startdate>20090320</startdate><enddate>20090320</enddate><creator>Ferry, Christine</creator><creator>Gianni, Maurizio</creator><creator>Lalevée, Sébastien</creator><creator>Bruck, Nathalie</creator><creator>Plassat, Jean-Luc</creator><creator>Raska, Ivan</creator><creator>Garattini, Enrico</creator><creator>Rochette-Egly, Cécile</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20090320</creationdate><title>SUG-1 Plays Proteolytic and Non-proteolytic Roles in the Control of Retinoic Acid Target Genes via Its Interaction with SRC-3</title><author>Ferry, Christine ; Gianni, Maurizio ; Lalevée, Sébastien ; Bruck, Nathalie ; Plassat, Jean-Luc ; Raska, Ivan ; Garattini, Enrico ; Rochette-Egly, Cécile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-29da51fbe1ee772d62cb602292902ee97b5550f8d6c847a9f202f8d543fda8813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Animals</topic><topic>ATPases Associated with Diverse Cellular Activities</topic><topic>Chlorocebus aethiops</topic><topic>COS Cells</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Expression Regulation - physiology</topic><topic>HeLa Cells</topic><topic>Histone Acetyltransferases - genetics</topic><topic>Histone Acetyltransferases - metabolism</topic><topic>Humans</topic><topic>LIM Domain Proteins</topic><topic>Models, Biological</topic><topic>Nuclear Receptor Coactivator 3</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Protein Synthesis, Post-Translational Modification, and Degradation</topic><topic>Receptors, Retinoic Acid - genetics</topic><topic>Receptors, Retinoic Acid - metabolism</topic><topic>Retinoic Acid Receptor alpha</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic - drug effects</topic><topic>Transcription, Genetic - physiology</topic><topic>Tretinoin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferry, Christine</creatorcontrib><creatorcontrib>Gianni, Maurizio</creatorcontrib><creatorcontrib>Lalevée, Sébastien</creatorcontrib><creatorcontrib>Bruck, Nathalie</creatorcontrib><creatorcontrib>Plassat, Jean-Luc</creatorcontrib><creatorcontrib>Raska, Ivan</creatorcontrib><creatorcontrib>Garattini, Enrico</creatorcontrib><creatorcontrib>Rochette-Egly, Cécile</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferry, Christine</au><au>Gianni, Maurizio</au><au>Lalevée, Sébastien</au><au>Bruck, Nathalie</au><au>Plassat, Jean-Luc</au><au>Raska, Ivan</au><au>Garattini, Enrico</au><au>Rochette-Egly, Cécile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SUG-1 Plays Proteolytic and Non-proteolytic Roles in the Control of Retinoic Acid Target Genes via Its Interaction with SRC-3</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-03-20</date><risdate>2009</risdate><volume>284</volume><issue>12</issue><spage>8127</spage><epage>8135</epage><pages>8127-8135</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Nuclear retinoic acid receptor α (RARα) activates gene expression through dynamic interactions with coregulatory protein complexes, the assembly of which is directed by the ligand and the AF-2 domain of RARα. Then RARα and its coactivator SRC-3 are degraded by the proteasome. Recently it has emerged that the proteasome also plays a key role in RARα-mediated transcription. Here we show that SUG-1, one of the six ATPases of the 19 S regulatory complex of the 26 S proteasome, interacts with SRC-3, is recruited at the promoters of retinoic acid (RA) target genes, and thereby participates to their transcription. In addition, SUG-1 also mediates the proteasomal degradation of SRC-3. However, when present in excess amounts, SUG-1 blocks the activation of RARα target genes and the degradation of RARα that occurs in response to RA, via its ability to interfere with the recruitment of SRC-3 and other coregulators at the AF-2 domain of RARα. We propose a model in which the ratio between SUG-1 and SRC-3 is crucial for the control of RARα functioning. This study provides new insights into how SUG-1 has a unique role in linking the transcription and degradation processes via its ability to interact with SRC-3.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19144644</pmid><doi>10.1074/jbc.M808815200</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2009-03, Vol.284 (12), p.8127-8135
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2658106
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Animals
ATPases Associated with Diverse Cellular Activities
Chlorocebus aethiops
COS Cells
Gene Expression Regulation - drug effects
Gene Expression Regulation - physiology
HeLa Cells
Histone Acetyltransferases - genetics
Histone Acetyltransferases - metabolism
Humans
LIM Domain Proteins
Models, Biological
Nuclear Receptor Coactivator 3
Proteasome Endopeptidase Complex - metabolism
Protein Structure, Tertiary - physiology
Protein Synthesis, Post-Translational Modification, and Degradation
Receptors, Retinoic Acid - genetics
Receptors, Retinoic Acid - metabolism
Retinoic Acid Receptor alpha
Trans-Activators - genetics
Trans-Activators - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic - drug effects
Transcription, Genetic - physiology
Tretinoin - pharmacology
title SUG-1 Plays Proteolytic and Non-proteolytic Roles in the Control of Retinoic Acid Target Genes via Its Interaction with SRC-3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SUG-1%20Plays%20Proteolytic%20and%20Non-proteolytic%20Roles%20in%20the%20Control%20of%20Retinoic%20Acid%20Target%20Genes%20via%20Its%20Interaction%20with%20SRC-3&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ferry,%20Christine&rft.date=2009-03-20&rft.volume=284&rft.issue=12&rft.spage=8127&rft.epage=8135&rft.pages=8127-8135&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M808815200&rft_dat=%3Cproquest_pubme%3E21083335%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21083335&rft_id=info:pmid/19144644&rft_els_id=S0021925820325254&rfr_iscdi=true