Mechanistic studies of the immunochemical termination of self-tolerance with unnatural amino acids
For more than 2 centuries active immunotherapy has been at the forefront of efforts to prevent infectious disease [Waldmann TA (2003) Nat Med 9:269-277]. However, the decreased ability of the immune system to mount a robust immune response to self-antigens has made it more difficult to generate ther...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2009-03, Vol.106 (11), p.4337-4342 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For more than 2 centuries active immunotherapy has been at the forefront of efforts to prevent infectious disease [Waldmann TA (2003) Nat Med 9:269-277]. However, the decreased ability of the immune system to mount a robust immune response to self-antigens has made it more difficult to generate therapeutic vaccines against cancer or chronic degenerative diseases. Recently, we showed that the site-specific incorporation of an immunogenic unnatural amino acid into an autologous protein offers a simple and effective approach to overcome self-tolerance. Here, we characterize the nature and durability of the polyclonal IgG antibody response and begin to establish the generality of p-nitrophenylalanine (pNO₂Phe)-induced loss of self-tolerance. Mutation of several surface residues of murine tumor necrosis factor-α (mTNF-α) independently to pNO₂Phe leads to a T cell-dependent polyclonal and sustainable anti-mTNF-α IgG autoantibody response that lasts for at least 40 weeks. The antibodies bind multiple epitopes on mTNF-α and protect mice from severe endotoxemia induced by lipopolysaccharide (LPS) challenge. Immunization of mice with a pNO₂Phe⁴³ mutant of murine retinol-binding protein (RBP4) also elicited a high titer IgG antibody response, which was cross-reactive with wild-type mRBP4. These findings suggest that this may be a relatively general approach to generate effective immunotherapeutics against cancer-associated or other weakly immunogenic antigens. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0900507106 |