Electronic medical record (EMR) utilization for public health surveillance

Public health surveillance systems need to be refined. We intend to use a generic approach for early identification of patients with severe influenza-like illness (ILI) by calculating a score that estimates a patients disease-severity. Accordingly, we built the Intelligent Severity Score Estimation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA ... Annual Symposium proceedings 2008-11, Vol.2008, p.480-484
Hauptverfasser: Mnatsakanyan, Zaruhi R, Mollura, Daniel J, Ticehurst, John R, Hashemian, Mohammad R, Hung, Lang M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 484
container_issue
container_start_page 480
container_title AMIA ... Annual Symposium proceedings
container_volume 2008
creator Mnatsakanyan, Zaruhi R
Mollura, Daniel J
Ticehurst, John R
Hashemian, Mohammad R
Hung, Lang M
description Public health surveillance systems need to be refined. We intend to use a generic approach for early identification of patients with severe influenza-like illness (ILI) by calculating a score that estimates a patients disease-severity. Accordingly, we built the Intelligent Severity Score Estimation Model (ISSEM), structured so that the inference process would reflect experts decision-making logic. Each patients disease-severity score is calculated from numbers of respiratory ICD9 encounters, and laboratory, radiologic, and prescription-therapeutic orders in the EMR. Other ISSEM components include chronic disease evidence, probability of immunodeficiency, and the providers general practice-behavior patterns. Sensitivity was determined from 200 randomly selected patients with upper- and lower-respiratory tract ILI; specificity, from 300 randomly selected patients with URI only. For different age groups, ISSEM sensitivity ranged between 90% and 95%; specificity was 72% to 84%. Our preliminary assessment of ISSEM performance demonstrated 93.5% sensitivity and 77.3% specificity across all age groups.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2656004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733873973</sourcerecordid><originalsourceid>FETCH-LOGICAL-p180t-a67e7fd116cceb9d11ec0943d6df0dc820d047781b5cadfe91f6f7feb7d972103</originalsourceid><addsrcrecordid>eNpVkFtLAzEQhYMgtlb_guRNfVhImm4uL4KUeqMiiD4v2WRiI-mmJrsF_fVGrKJPZ2CG75w5e2hM61pVMyL4CB3m_ErITNSSH6ARlUpJJdkY3S0CmD7Fzhu8BuuNDjiBicnis8X94zkeeh_8h-597LCLCW-GNpTbFejQr3Ae0hZ8CLozcIT2nQ4Zjnc6Qc9Xi6f5TbV8uL6dXy6rDZWkrzQXIJyllBsDrSoDGKJmzHLriDVySmzJKSRta6OtA0Udd8JBK6wSU0rYBF18c0uUEtlA1ycdmk3ya53em6h983_T-VXzErfNlNe8dFAApztAim8D5L5Z-2zg6wuIQ24EY1IwVWSCTv5a_Xr89Mc-AfkHbcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733873973</pqid></control><display><type>article</type><title>Electronic medical record (EMR) utilization for public health surveillance</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Mnatsakanyan, Zaruhi R ; Mollura, Daniel J ; Ticehurst, John R ; Hashemian, Mohammad R ; Hung, Lang M</creator><creatorcontrib>Mnatsakanyan, Zaruhi R ; Mollura, Daniel J ; Ticehurst, John R ; Hashemian, Mohammad R ; Hung, Lang M</creatorcontrib><description>Public health surveillance systems need to be refined. We intend to use a generic approach for early identification of patients with severe influenza-like illness (ILI) by calculating a score that estimates a patients disease-severity. Accordingly, we built the Intelligent Severity Score Estimation Model (ISSEM), structured so that the inference process would reflect experts decision-making logic. Each patients disease-severity score is calculated from numbers of respiratory ICD9 encounters, and laboratory, radiologic, and prescription-therapeutic orders in the EMR. Other ISSEM components include chronic disease evidence, probability of immunodeficiency, and the providers general practice-behavior patterns. Sensitivity was determined from 200 randomly selected patients with upper- and lower-respiratory tract ILI; specificity, from 300 randomly selected patients with URI only. For different age groups, ISSEM sensitivity ranged between 90% and 95%; specificity was 72% to 84%. Our preliminary assessment of ISSEM performance demonstrated 93.5% sensitivity and 77.3% specificity across all age groups.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 18998983</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Algorithms ; Artificial Intelligence ; Decision Support Systems, Clinical - organization &amp; administration ; Humans ; Influenza, Human - classification ; Influenza, Human - diagnosis ; Maryland ; Medical Records Systems, Computerized ; Natural Language Processing ; Pattern Recognition, Automated - methods ; Population Surveillance - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Severity of Illness Index</subject><ispartof>AMIA ... Annual Symposium proceedings, 2008-11, Vol.2008, p.480-484</ispartof><rights>2008 AMIA - All rights reserved. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656004/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656004/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18998983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mnatsakanyan, Zaruhi R</creatorcontrib><creatorcontrib>Mollura, Daniel J</creatorcontrib><creatorcontrib>Ticehurst, John R</creatorcontrib><creatorcontrib>Hashemian, Mohammad R</creatorcontrib><creatorcontrib>Hung, Lang M</creatorcontrib><title>Electronic medical record (EMR) utilization for public health surveillance</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>Public health surveillance systems need to be refined. We intend to use a generic approach for early identification of patients with severe influenza-like illness (ILI) by calculating a score that estimates a patients disease-severity. Accordingly, we built the Intelligent Severity Score Estimation Model (ISSEM), structured so that the inference process would reflect experts decision-making logic. Each patients disease-severity score is calculated from numbers of respiratory ICD9 encounters, and laboratory, radiologic, and prescription-therapeutic orders in the EMR. Other ISSEM components include chronic disease evidence, probability of immunodeficiency, and the providers general practice-behavior patterns. Sensitivity was determined from 200 randomly selected patients with upper- and lower-respiratory tract ILI; specificity, from 300 randomly selected patients with URI only. For different age groups, ISSEM sensitivity ranged between 90% and 95%; specificity was 72% to 84%. Our preliminary assessment of ISSEM performance demonstrated 93.5% sensitivity and 77.3% specificity across all age groups.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Decision Support Systems, Clinical - organization &amp; administration</subject><subject>Humans</subject><subject>Influenza, Human - classification</subject><subject>Influenza, Human - diagnosis</subject><subject>Maryland</subject><subject>Medical Records Systems, Computerized</subject><subject>Natural Language Processing</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Population Surveillance - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Severity of Illness Index</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkFtLAzEQhYMgtlb_guRNfVhImm4uL4KUeqMiiD4v2WRiI-mmJrsF_fVGrKJPZ2CG75w5e2hM61pVMyL4CB3m_ErITNSSH6ARlUpJJdkY3S0CmD7Fzhu8BuuNDjiBicnis8X94zkeeh_8h-597LCLCW-GNpTbFejQr3Ae0hZ8CLozcIT2nQ4Zjnc6Qc9Xi6f5TbV8uL6dXy6rDZWkrzQXIJyllBsDrSoDGKJmzHLriDVySmzJKSRta6OtA0Udd8JBK6wSU0rYBF18c0uUEtlA1ycdmk3ya53em6h983_T-VXzErfNlNe8dFAApztAim8D5L5Z-2zg6wuIQ24EY1IwVWSCTv5a_Xr89Mc-AfkHbcw</recordid><startdate>20081106</startdate><enddate>20081106</enddate><creator>Mnatsakanyan, Zaruhi R</creator><creator>Mollura, Daniel J</creator><creator>Ticehurst, John R</creator><creator>Hashemian, Mohammad R</creator><creator>Hung, Lang M</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081106</creationdate><title>Electronic medical record (EMR) utilization for public health surveillance</title><author>Mnatsakanyan, Zaruhi R ; Mollura, Daniel J ; Ticehurst, John R ; Hashemian, Mohammad R ; Hung, Lang M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p180t-a67e7fd116cceb9d11ec0943d6df0dc820d047781b5cadfe91f6f7feb7d972103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Decision Support Systems, Clinical - organization &amp; administration</topic><topic>Humans</topic><topic>Influenza, Human - classification</topic><topic>Influenza, Human - diagnosis</topic><topic>Maryland</topic><topic>Medical Records Systems, Computerized</topic><topic>Natural Language Processing</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Population Surveillance - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Severity of Illness Index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mnatsakanyan, Zaruhi R</creatorcontrib><creatorcontrib>Mollura, Daniel J</creatorcontrib><creatorcontrib>Ticehurst, John R</creatorcontrib><creatorcontrib>Hashemian, Mohammad R</creatorcontrib><creatorcontrib>Hung, Lang M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mnatsakanyan, Zaruhi R</au><au>Mollura, Daniel J</au><au>Ticehurst, John R</au><au>Hashemian, Mohammad R</au><au>Hung, Lang M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic medical record (EMR) utilization for public health surveillance</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2008-11-06</date><risdate>2008</risdate><volume>2008</volume><spage>480</spage><epage>484</epage><pages>480-484</pages><eissn>1559-4076</eissn><abstract>Public health surveillance systems need to be refined. We intend to use a generic approach for early identification of patients with severe influenza-like illness (ILI) by calculating a score that estimates a patients disease-severity. Accordingly, we built the Intelligent Severity Score Estimation Model (ISSEM), structured so that the inference process would reflect experts decision-making logic. Each patients disease-severity score is calculated from numbers of respiratory ICD9 encounters, and laboratory, radiologic, and prescription-therapeutic orders in the EMR. Other ISSEM components include chronic disease evidence, probability of immunodeficiency, and the providers general practice-behavior patterns. Sensitivity was determined from 200 randomly selected patients with upper- and lower-respiratory tract ILI; specificity, from 300 randomly selected patients with URI only. For different age groups, ISSEM sensitivity ranged between 90% and 95%; specificity was 72% to 84%. Our preliminary assessment of ISSEM performance demonstrated 93.5% sensitivity and 77.3% specificity across all age groups.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>18998983</pmid><tpages>5</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1559-4076
ispartof AMIA ... Annual Symposium proceedings, 2008-11, Vol.2008, p.480-484
issn 1559-4076
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2656004
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Algorithms
Artificial Intelligence
Decision Support Systems, Clinical - organization & administration
Humans
Influenza, Human - classification
Influenza, Human - diagnosis
Maryland
Medical Records Systems, Computerized
Natural Language Processing
Pattern Recognition, Automated - methods
Population Surveillance - methods
Reproducibility of Results
Sensitivity and Specificity
Severity of Illness Index
title Electronic medical record (EMR) utilization for public health surveillance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20medical%20record%20(EMR)%20utilization%20for%20public%20health%20surveillance&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Mnatsakanyan,%20Zaruhi%20R&rft.date=2008-11-06&rft.volume=2008&rft.spage=480&rft.epage=484&rft.pages=480-484&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E733873973%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733873973&rft_id=info:pmid/18998983&rfr_iscdi=true