An ontology-driven method for hierarchical mining of temporal patterns: application to HIV drug resistance research

Many biomedical research databases contain time-oriented data resulting from longitudinal, time-series and time-dependent study designs, knowledge of which is not handled explicitly by most data-analytic methods. To make use of such knowledge about research data, we have developed an ontology-driven...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA ... Annual Symposium proceedings 2007-10, Vol.2007, p.614-619
Hauptverfasser: Raj, Rashmi, O'Connor, Martin J, Das, Amar K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 619
container_issue
container_start_page 614
container_title AMIA ... Annual Symposium proceedings
container_volume 2007
creator Raj, Rashmi
O'Connor, Martin J
Das, Amar K
description Many biomedical research databases contain time-oriented data resulting from longitudinal, time-series and time-dependent study designs, knowledge of which is not handled explicitly by most data-analytic methods. To make use of such knowledge about research data, we have developed an ontology-driven temporal mining method, called ChronoMiner. Most mining algorithms require data be inputted in a single table. ChronoMiner, in contrast, can search for interesting temporal patterns among multiple input tables and at different levels of hierarchical representation. In this paper, we present the application of our method to the discovery of temporal associations between newly arising mutations in the HIV genome and past drug regimens. We discuss the various components of ChronoMiner, including its user interface, and provide results of a study indicating the efficiency and potential value of ChronoMiner on an existing HIV drug resistance data repository.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2655843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70142667</sourcerecordid><originalsourceid>FETCH-LOGICAL-p179t-5cb0a4665b22df14fb8f6374b8b7472619031e51a5792700a4532680f1c642c13</originalsourceid><addsrcrecordid>eNpVkE1LxDAQhosg7rr6FyQnb4UkzUfrQVgWPxYWvKjXkqbTNtImNUkX9t_bxVX0NMPMw_MOc5YsCedFyrAUi-QyhA-MmeS5uEgWJBdFVuBimYS1Rc5G17v2kNbe7MGiAWLnatQ4jzoDXnndGa16NBhrbItcgyIMo_PzaFQxgrfhDqlx7GcqGmdRdOh5-45qP7XIQzAhKqvh2MJRdpWcN6oPcH2qq-Tt8eF185zuXp62m_UuHYksYsp1hRUTgleU1g1hTZU3IpOsyivJJBWkwBkBThSXBZV4ZnlGRY4bogWjmmSr5P7bO07VALUGG-eby9GbQflD6ZQp_2-s6crW7UsqOM9ZNgtuTwLvPicIsRxM0ND3yoKbQikxYVQIOYM3f5N-I37-nH0B_6R7Aw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70142667</pqid></control><display><type>article</type><title>An ontology-driven method for hierarchical mining of temporal patterns: application to HIV drug resistance research</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Raj, Rashmi ; O'Connor, Martin J ; Das, Amar K</creator><creatorcontrib>Raj, Rashmi ; O'Connor, Martin J ; Das, Amar K</creatorcontrib><description>Many biomedical research databases contain time-oriented data resulting from longitudinal, time-series and time-dependent study designs, knowledge of which is not handled explicitly by most data-analytic methods. To make use of such knowledge about research data, we have developed an ontology-driven temporal mining method, called ChronoMiner. Most mining algorithms require data be inputted in a single table. ChronoMiner, in contrast, can search for interesting temporal patterns among multiple input tables and at different levels of hierarchical representation. In this paper, we present the application of our method to the discovery of temporal associations between newly arising mutations in the HIV genome and past drug regimens. We discuss the various components of ChronoMiner, including its user interface, and provide results of a study indicating the efficiency and potential value of ChronoMiner on an existing HIV drug resistance data repository.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 18693909</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Algorithms ; Anti-HIV Agents - therapeutic use ; Databases as Topic ; Drug Resistance, Viral - genetics ; Genome, Viral ; HIV - genetics ; HIV Infections - drug therapy ; HIV Infections - virology ; Humans ; Information Storage and Retrieval - methods ; Knowledge Bases ; Longitudinal Studies ; Mutation ; Time ; User-Computer Interface ; Viral Load ; Vocabulary, Controlled</subject><ispartof>AMIA ... Annual Symposium proceedings, 2007-10, Vol.2007, p.614-619</ispartof><rights>2007 AMIA - All rights reserved. 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2655843/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2655843/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18693909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raj, Rashmi</creatorcontrib><creatorcontrib>O'Connor, Martin J</creatorcontrib><creatorcontrib>Das, Amar K</creatorcontrib><title>An ontology-driven method for hierarchical mining of temporal patterns: application to HIV drug resistance research</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>Many biomedical research databases contain time-oriented data resulting from longitudinal, time-series and time-dependent study designs, knowledge of which is not handled explicitly by most data-analytic methods. To make use of such knowledge about research data, we have developed an ontology-driven temporal mining method, called ChronoMiner. Most mining algorithms require data be inputted in a single table. ChronoMiner, in contrast, can search for interesting temporal patterns among multiple input tables and at different levels of hierarchical representation. In this paper, we present the application of our method to the discovery of temporal associations between newly arising mutations in the HIV genome and past drug regimens. We discuss the various components of ChronoMiner, including its user interface, and provide results of a study indicating the efficiency and potential value of ChronoMiner on an existing HIV drug resistance data repository.</description><subject>Algorithms</subject><subject>Anti-HIV Agents - therapeutic use</subject><subject>Databases as Topic</subject><subject>Drug Resistance, Viral - genetics</subject><subject>Genome, Viral</subject><subject>HIV - genetics</subject><subject>HIV Infections - drug therapy</subject><subject>HIV Infections - virology</subject><subject>Humans</subject><subject>Information Storage and Retrieval - methods</subject><subject>Knowledge Bases</subject><subject>Longitudinal Studies</subject><subject>Mutation</subject><subject>Time</subject><subject>User-Computer Interface</subject><subject>Viral Load</subject><subject>Vocabulary, Controlled</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1LxDAQhosg7rr6FyQnb4UkzUfrQVgWPxYWvKjXkqbTNtImNUkX9t_bxVX0NMPMw_MOc5YsCedFyrAUi-QyhA-MmeS5uEgWJBdFVuBimYS1Rc5G17v2kNbe7MGiAWLnatQ4jzoDXnndGa16NBhrbItcgyIMo_PzaFQxgrfhDqlx7GcqGmdRdOh5-45qP7XIQzAhKqvh2MJRdpWcN6oPcH2qq-Tt8eF185zuXp62m_UuHYksYsp1hRUTgleU1g1hTZU3IpOsyivJJBWkwBkBThSXBZV4ZnlGRY4bogWjmmSr5P7bO07VALUGG-eby9GbQflD6ZQp_2-s6crW7UsqOM9ZNgtuTwLvPicIsRxM0ND3yoKbQikxYVQIOYM3f5N-I37-nH0B_6R7Aw</recordid><startdate>20071011</startdate><enddate>20071011</enddate><creator>Raj, Rashmi</creator><creator>O'Connor, Martin J</creator><creator>Das, Amar K</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071011</creationdate><title>An ontology-driven method for hierarchical mining of temporal patterns: application to HIV drug resistance research</title><author>Raj, Rashmi ; O'Connor, Martin J ; Das, Amar K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p179t-5cb0a4665b22df14fb8f6374b8b7472619031e51a5792700a4532680f1c642c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Anti-HIV Agents - therapeutic use</topic><topic>Databases as Topic</topic><topic>Drug Resistance, Viral - genetics</topic><topic>Genome, Viral</topic><topic>HIV - genetics</topic><topic>HIV Infections - drug therapy</topic><topic>HIV Infections - virology</topic><topic>Humans</topic><topic>Information Storage and Retrieval - methods</topic><topic>Knowledge Bases</topic><topic>Longitudinal Studies</topic><topic>Mutation</topic><topic>Time</topic><topic>User-Computer Interface</topic><topic>Viral Load</topic><topic>Vocabulary, Controlled</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raj, Rashmi</creatorcontrib><creatorcontrib>O'Connor, Martin J</creatorcontrib><creatorcontrib>Das, Amar K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raj, Rashmi</au><au>O'Connor, Martin J</au><au>Das, Amar K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ontology-driven method for hierarchical mining of temporal patterns: application to HIV drug resistance research</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2007-10-11</date><risdate>2007</risdate><volume>2007</volume><spage>614</spage><epage>619</epage><pages>614-619</pages><eissn>1559-4076</eissn><abstract>Many biomedical research databases contain time-oriented data resulting from longitudinal, time-series and time-dependent study designs, knowledge of which is not handled explicitly by most data-analytic methods. To make use of such knowledge about research data, we have developed an ontology-driven temporal mining method, called ChronoMiner. Most mining algorithms require data be inputted in a single table. ChronoMiner, in contrast, can search for interesting temporal patterns among multiple input tables and at different levels of hierarchical representation. In this paper, we present the application of our method to the discovery of temporal associations between newly arising mutations in the HIV genome and past drug regimens. We discuss the various components of ChronoMiner, including its user interface, and provide results of a study indicating the efficiency and potential value of ChronoMiner on an existing HIV drug resistance data repository.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>18693909</pmid><tpages>6</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1559-4076
ispartof AMIA ... Annual Symposium proceedings, 2007-10, Vol.2007, p.614-619
issn 1559-4076
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2655843
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Anti-HIV Agents - therapeutic use
Databases as Topic
Drug Resistance, Viral - genetics
Genome, Viral
HIV - genetics
HIV Infections - drug therapy
HIV Infections - virology
Humans
Information Storage and Retrieval - methods
Knowledge Bases
Longitudinal Studies
Mutation
Time
User-Computer Interface
Viral Load
Vocabulary, Controlled
title An ontology-driven method for hierarchical mining of temporal patterns: application to HIV drug resistance research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T11%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ontology-driven%20method%20for%20hierarchical%20mining%20of%20temporal%20patterns:%20application%20to%20HIV%20drug%20resistance%20research&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Raj,%20Rashmi&rft.date=2007-10-11&rft.volume=2007&rft.spage=614&rft.epage=619&rft.pages=614-619&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E70142667%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70142667&rft_id=info:pmid/18693909&rfr_iscdi=true