Molecular Bases for the Recognition of Short Peptide Substrates and Cysteine-Directed Modifications of Human Insulin-Degrading Enzyme

Insulin degrading enzyme (IDE) utilizes a large catalytic chamber to selectively bind and degrade peptide substrates such as insulin and amyloid β (Aβ). Tight interactions with substrates occur at an exosite located ∼30 Å away from the catalytic center that anchors the N-terminus of substrates to fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2008-12, Vol.47 (48), p.12822-12834
Hauptverfasser: Malito, Enrico, Ralat, Luis A, Manolopoulou, Marika, Tsay, Julie L, Wadlington, Natasha L, Tang, Wei-Jen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12834
container_issue 48
container_start_page 12822
container_title Biochemistry (Easton)
container_volume 47
creator Malito, Enrico
Ralat, Luis A
Manolopoulou, Marika
Tsay, Julie L
Wadlington, Natasha L
Tang, Wei-Jen
description Insulin degrading enzyme (IDE) utilizes a large catalytic chamber to selectively bind and degrade peptide substrates such as insulin and amyloid β (Aβ). Tight interactions with substrates occur at an exosite located ∼30 Å away from the catalytic center that anchors the N-terminus of substrates to facilitate binding and subsequent cleavages at the catalytic site. However, IDE also degrades peptide substrates that are too short to occupy both the catalytic site and the exosite simultaneously. Here, we use kinins as a model system to address the kinetics and regulation of human IDE with short peptides. IDE specifically degrades bradykinin and kallidin at the Pro/Phe site. A 1.9 Å crystal structure of bradykinin-bound IDE reveals the binding of bradykinin to the exosite and not to the catalytic site. In agreement with observed high K m values, this suggests low affinity of bradykinin for IDE. This structure also provides the molecular basis on how the binding of short peptides at the exosite could regulate substrate recognition. We also found that human IDE is potently inhibited by physiologically relevant concentrations of S-nitrosylation and oxidation agents. Cysteine-directed modifications play a key role, since an IDE mutant devoid of all 13 cysteines is insensitive to the inhibition by S-nitrosoglutathione, hydrogen peroxide, or N-ethylmaleimide. Specifically, cysteine 819 of human IDE is located inside the catalytic chamber pointing toward an extended hydrophobic pocket and is critical for the inactivation. Thiol-directed modification of this residue likely causes local structural perturbation to reduce substrate binding and catalysis.
doi_str_mv 10.1021/bi801192h
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2652632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66691706</sourcerecordid><originalsourceid>FETCH-LOGICAL-a468t-eb29fa1ac7c3f72e0690c27a9b3baf836e72d40f63d10ca0efc79269500a00103</originalsourceid><addsrcrecordid>eNptkU1vEzEQhlcIREPhwB9AFhJIHBbG3o13fUGCpKVFraiaIiEultc7m7jd2MH2IsKd_42jjQJInEajeeadjzfLnlJ4TYHRN42pgVLBVveyCZ0yyEshpvezCQDwnAkOR9mjEG5TWkJVPsyOaC1qTjmfZL8uXY966JUn71XAQDrnSVwhuUbtltZE4yxxHVmsnI_kCjfRtEgWQxOiVzHxyrZktg0RjcV8bjzqiC25dK3pjFa79rDrPxvWypJzG4be2HyOS69aY5fkxP7crvFx9qBTfcAn-3icfT49uZmd5RefPpzP3l3kquR1zLFholNU6UoXXcUQuADNKiWaolFdXXCsWFtCx4uWglaAna4E42IKoAAoFMfZ21F3MzRrbDXadEUvN96sld9Kp4z8t2LNSi7dd8n4lPGCJYHno4AL0cigTUS90s7adLakABWlNEEv91O8-zZgiHJtgsa-VxbdECTnXNAKeAJfjaD2LgSP3WETCnLnrDw4m9hnf6_-h9xbmYB8BEwy48ehrvyd5FVRTeXN1UJei1P6lX6Zy4-JfzHySgd56wZv0-f_M_g3Zai8GQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66691706</pqid></control><display><type>article</type><title>Molecular Bases for the Recognition of Short Peptide Substrates and Cysteine-Directed Modifications of Human Insulin-Degrading Enzyme</title><source>ACS Publications</source><source>MEDLINE</source><creator>Malito, Enrico ; Ralat, Luis A ; Manolopoulou, Marika ; Tsay, Julie L ; Wadlington, Natasha L ; Tang, Wei-Jen</creator><creatorcontrib>Malito, Enrico ; Ralat, Luis A ; Manolopoulou, Marika ; Tsay, Julie L ; Wadlington, Natasha L ; Tang, Wei-Jen ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Insulin degrading enzyme (IDE) utilizes a large catalytic chamber to selectively bind and degrade peptide substrates such as insulin and amyloid β (Aβ). Tight interactions with substrates occur at an exosite located ∼30 Å away from the catalytic center that anchors the N-terminus of substrates to facilitate binding and subsequent cleavages at the catalytic site. However, IDE also degrades peptide substrates that are too short to occupy both the catalytic site and the exosite simultaneously. Here, we use kinins as a model system to address the kinetics and regulation of human IDE with short peptides. IDE specifically degrades bradykinin and kallidin at the Pro/Phe site. A 1.9 Å crystal structure of bradykinin-bound IDE reveals the binding of bradykinin to the exosite and not to the catalytic site. In agreement with observed high K m values, this suggests low affinity of bradykinin for IDE. This structure also provides the molecular basis on how the binding of short peptides at the exosite could regulate substrate recognition. We also found that human IDE is potently inhibited by physiologically relevant concentrations of S-nitrosylation and oxidation agents. Cysteine-directed modifications play a key role, since an IDE mutant devoid of all 13 cysteines is insensitive to the inhibition by S-nitrosoglutathione, hydrogen peroxide, or N-ethylmaleimide. Specifically, cysteine 819 of human IDE is located inside the catalytic chamber pointing toward an extended hydrophobic pocket and is critical for the inactivation. Thiol-directed modification of this residue likely causes local structural perturbation to reduce substrate binding and catalysis.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi801192h</identifier><identifier>PMID: 18986166</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>AFFINITY ; Alkylation ; Amino Acid Substitution ; BRADYKININ ; CATALYSIS ; Catalytic Domain ; Conserved Sequence ; CRYSTAL STRUCTURE ; Crystallography, X-Ray ; CYSTEINE ; Cysteine - metabolism ; Enzyme Inhibitors - pharmacology ; ENZYMES ; Humans ; HYDROGEN PEROXIDE ; INACTIVATION ; INSULIN ; Insulysin - antagonists &amp; inhibitors ; Insulysin - chemistry ; Insulysin - genetics ; Insulysin - metabolism ; Kallidin - metabolism ; KINETICS ; KININS ; Maleimides - chemistry ; Maleimides - metabolism ; MATERIALS SCIENCE ; Models, Molecular ; MODIFICATIONS ; MUTANTS ; OXIDATION ; Oxidation-Reduction ; PEPTIDES ; Peptides - chemistry ; Peptides - metabolism ; Protein Processing, Post-Translational ; REGULATIONS ; RESIDUES ; Substrate Specificity ; SUBSTRATES ; Sulfhydryl Compounds - metabolism</subject><ispartof>Biochemistry (Easton), 2008-12, Vol.47 (48), p.12822-12834</ispartof><rights>Copyright © 2008 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a468t-eb29fa1ac7c3f72e0690c27a9b3baf836e72d40f63d10ca0efc79269500a00103</citedby><cites>FETCH-LOGICAL-a468t-eb29fa1ac7c3f72e0690c27a9b3baf836e72d40f63d10ca0efc79269500a00103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi801192h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi801192h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18986166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1007111$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Malito, Enrico</creatorcontrib><creatorcontrib>Ralat, Luis A</creatorcontrib><creatorcontrib>Manolopoulou, Marika</creatorcontrib><creatorcontrib>Tsay, Julie L</creatorcontrib><creatorcontrib>Wadlington, Natasha L</creatorcontrib><creatorcontrib>Tang, Wei-Jen</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Molecular Bases for the Recognition of Short Peptide Substrates and Cysteine-Directed Modifications of Human Insulin-Degrading Enzyme</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Insulin degrading enzyme (IDE) utilizes a large catalytic chamber to selectively bind and degrade peptide substrates such as insulin and amyloid β (Aβ). Tight interactions with substrates occur at an exosite located ∼30 Å away from the catalytic center that anchors the N-terminus of substrates to facilitate binding and subsequent cleavages at the catalytic site. However, IDE also degrades peptide substrates that are too short to occupy both the catalytic site and the exosite simultaneously. Here, we use kinins as a model system to address the kinetics and regulation of human IDE with short peptides. IDE specifically degrades bradykinin and kallidin at the Pro/Phe site. A 1.9 Å crystal structure of bradykinin-bound IDE reveals the binding of bradykinin to the exosite and not to the catalytic site. In agreement with observed high K m values, this suggests low affinity of bradykinin for IDE. This structure also provides the molecular basis on how the binding of short peptides at the exosite could regulate substrate recognition. We also found that human IDE is potently inhibited by physiologically relevant concentrations of S-nitrosylation and oxidation agents. Cysteine-directed modifications play a key role, since an IDE mutant devoid of all 13 cysteines is insensitive to the inhibition by S-nitrosoglutathione, hydrogen peroxide, or N-ethylmaleimide. Specifically, cysteine 819 of human IDE is located inside the catalytic chamber pointing toward an extended hydrophobic pocket and is critical for the inactivation. Thiol-directed modification of this residue likely causes local structural perturbation to reduce substrate binding and catalysis.</description><subject>AFFINITY</subject><subject>Alkylation</subject><subject>Amino Acid Substitution</subject><subject>BRADYKININ</subject><subject>CATALYSIS</subject><subject>Catalytic Domain</subject><subject>Conserved Sequence</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray</subject><subject>CYSTEINE</subject><subject>Cysteine - metabolism</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>ENZYMES</subject><subject>Humans</subject><subject>HYDROGEN PEROXIDE</subject><subject>INACTIVATION</subject><subject>INSULIN</subject><subject>Insulysin - antagonists &amp; inhibitors</subject><subject>Insulysin - chemistry</subject><subject>Insulysin - genetics</subject><subject>Insulysin - metabolism</subject><subject>Kallidin - metabolism</subject><subject>KINETICS</subject><subject>KININS</subject><subject>Maleimides - chemistry</subject><subject>Maleimides - metabolism</subject><subject>MATERIALS SCIENCE</subject><subject>Models, Molecular</subject><subject>MODIFICATIONS</subject><subject>MUTANTS</subject><subject>OXIDATION</subject><subject>Oxidation-Reduction</subject><subject>PEPTIDES</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Protein Processing, Post-Translational</subject><subject>REGULATIONS</subject><subject>RESIDUES</subject><subject>Substrate Specificity</subject><subject>SUBSTRATES</subject><subject>Sulfhydryl Compounds - metabolism</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkU1vEzEQhlcIREPhwB9AFhJIHBbG3o13fUGCpKVFraiaIiEultc7m7jd2MH2IsKd_42jjQJInEajeeadjzfLnlJ4TYHRN42pgVLBVveyCZ0yyEshpvezCQDwnAkOR9mjEG5TWkJVPsyOaC1qTjmfZL8uXY966JUn71XAQDrnSVwhuUbtltZE4yxxHVmsnI_kCjfRtEgWQxOiVzHxyrZktg0RjcV8bjzqiC25dK3pjFa79rDrPxvWypJzG4be2HyOS69aY5fkxP7crvFx9qBTfcAn-3icfT49uZmd5RefPpzP3l3kquR1zLFholNU6UoXXcUQuADNKiWaolFdXXCsWFtCx4uWglaAna4E42IKoAAoFMfZ21F3MzRrbDXadEUvN96sld9Kp4z8t2LNSi7dd8n4lPGCJYHno4AL0cigTUS90s7adLakABWlNEEv91O8-zZgiHJtgsa-VxbdECTnXNAKeAJfjaD2LgSP3WETCnLnrDw4m9hnf6_-h9xbmYB8BEwy48ehrvyd5FVRTeXN1UJei1P6lX6Zy4-JfzHySgd56wZv0-f_M_g3Zai8GQ</recordid><startdate>20081202</startdate><enddate>20081202</enddate><creator>Malito, Enrico</creator><creator>Ralat, Luis A</creator><creator>Manolopoulou, Marika</creator><creator>Tsay, Julie L</creator><creator>Wadlington, Natasha L</creator><creator>Tang, Wei-Jen</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20081202</creationdate><title>Molecular Bases for the Recognition of Short Peptide Substrates and Cysteine-Directed Modifications of Human Insulin-Degrading Enzyme</title><author>Malito, Enrico ; Ralat, Luis A ; Manolopoulou, Marika ; Tsay, Julie L ; Wadlington, Natasha L ; Tang, Wei-Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a468t-eb29fa1ac7c3f72e0690c27a9b3baf836e72d40f63d10ca0efc79269500a00103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>AFFINITY</topic><topic>Alkylation</topic><topic>Amino Acid Substitution</topic><topic>BRADYKININ</topic><topic>CATALYSIS</topic><topic>Catalytic Domain</topic><topic>Conserved Sequence</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray</topic><topic>CYSTEINE</topic><topic>Cysteine - metabolism</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>ENZYMES</topic><topic>Humans</topic><topic>HYDROGEN PEROXIDE</topic><topic>INACTIVATION</topic><topic>INSULIN</topic><topic>Insulysin - antagonists &amp; inhibitors</topic><topic>Insulysin - chemistry</topic><topic>Insulysin - genetics</topic><topic>Insulysin - metabolism</topic><topic>Kallidin - metabolism</topic><topic>KINETICS</topic><topic>KININS</topic><topic>Maleimides - chemistry</topic><topic>Maleimides - metabolism</topic><topic>MATERIALS SCIENCE</topic><topic>Models, Molecular</topic><topic>MODIFICATIONS</topic><topic>MUTANTS</topic><topic>OXIDATION</topic><topic>Oxidation-Reduction</topic><topic>PEPTIDES</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Protein Processing, Post-Translational</topic><topic>REGULATIONS</topic><topic>RESIDUES</topic><topic>Substrate Specificity</topic><topic>SUBSTRATES</topic><topic>Sulfhydryl Compounds - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malito, Enrico</creatorcontrib><creatorcontrib>Ralat, Luis A</creatorcontrib><creatorcontrib>Manolopoulou, Marika</creatorcontrib><creatorcontrib>Tsay, Julie L</creatorcontrib><creatorcontrib>Wadlington, Natasha L</creatorcontrib><creatorcontrib>Tang, Wei-Jen</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malito, Enrico</au><au>Ralat, Luis A</au><au>Manolopoulou, Marika</au><au>Tsay, Julie L</au><au>Wadlington, Natasha L</au><au>Tang, Wei-Jen</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Bases for the Recognition of Short Peptide Substrates and Cysteine-Directed Modifications of Human Insulin-Degrading Enzyme</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2008-12-02</date><risdate>2008</risdate><volume>47</volume><issue>48</issue><spage>12822</spage><epage>12834</epage><pages>12822-12834</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Insulin degrading enzyme (IDE) utilizes a large catalytic chamber to selectively bind and degrade peptide substrates such as insulin and amyloid β (Aβ). Tight interactions with substrates occur at an exosite located ∼30 Å away from the catalytic center that anchors the N-terminus of substrates to facilitate binding and subsequent cleavages at the catalytic site. However, IDE also degrades peptide substrates that are too short to occupy both the catalytic site and the exosite simultaneously. Here, we use kinins as a model system to address the kinetics and regulation of human IDE with short peptides. IDE specifically degrades bradykinin and kallidin at the Pro/Phe site. A 1.9 Å crystal structure of bradykinin-bound IDE reveals the binding of bradykinin to the exosite and not to the catalytic site. In agreement with observed high K m values, this suggests low affinity of bradykinin for IDE. This structure also provides the molecular basis on how the binding of short peptides at the exosite could regulate substrate recognition. We also found that human IDE is potently inhibited by physiologically relevant concentrations of S-nitrosylation and oxidation agents. Cysteine-directed modifications play a key role, since an IDE mutant devoid of all 13 cysteines is insensitive to the inhibition by S-nitrosoglutathione, hydrogen peroxide, or N-ethylmaleimide. Specifically, cysteine 819 of human IDE is located inside the catalytic chamber pointing toward an extended hydrophobic pocket and is critical for the inactivation. Thiol-directed modification of this residue likely causes local structural perturbation to reduce substrate binding and catalysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>18986166</pmid><doi>10.1021/bi801192h</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2008-12, Vol.47 (48), p.12822-12834
issn 0006-2960
1520-4995
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2652632
source ACS Publications; MEDLINE
subjects AFFINITY
Alkylation
Amino Acid Substitution
BRADYKININ
CATALYSIS
Catalytic Domain
Conserved Sequence
CRYSTAL STRUCTURE
Crystallography, X-Ray
CYSTEINE
Cysteine - metabolism
Enzyme Inhibitors - pharmacology
ENZYMES
Humans
HYDROGEN PEROXIDE
INACTIVATION
INSULIN
Insulysin - antagonists & inhibitors
Insulysin - chemistry
Insulysin - genetics
Insulysin - metabolism
Kallidin - metabolism
KINETICS
KININS
Maleimides - chemistry
Maleimides - metabolism
MATERIALS SCIENCE
Models, Molecular
MODIFICATIONS
MUTANTS
OXIDATION
Oxidation-Reduction
PEPTIDES
Peptides - chemistry
Peptides - metabolism
Protein Processing, Post-Translational
REGULATIONS
RESIDUES
Substrate Specificity
SUBSTRATES
Sulfhydryl Compounds - metabolism
title Molecular Bases for the Recognition of Short Peptide Substrates and Cysteine-Directed Modifications of Human Insulin-Degrading Enzyme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Bases%20for%20the%20Recognition%20of%20Short%20Peptide%20Substrates%20and%20Cysteine-Directed%20Modifications%20of%20Human%20Insulin-Degrading%20Enzyme&rft.jtitle=Biochemistry%20(Easton)&rft.au=Malito,%20Enrico&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2008-12-02&rft.volume=47&rft.issue=48&rft.spage=12822&rft.epage=12834&rft.pages=12822-12834&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi801192h&rft_dat=%3Cproquest_pubme%3E66691706%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66691706&rft_id=info:pmid/18986166&rfr_iscdi=true