Do multiple ionic interactions contribute to skeletal muscle fatigue?

During intense exercise or electrical stimulation of skeletal muscle the concentrations of several ions change simultaneously in interstitial, transverse tubular and intracellular compartments. Consequently the functional effects of multiple ionic changes need to be considered together. A diminished...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2008-09, Vol.586 (17), p.4039-4054
Hauptverfasser: Cairns, S. P., Lindinger, M. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4054
container_issue 17
container_start_page 4039
container_title The Journal of physiology
container_volume 586
creator Cairns, S. P.
Lindinger, M. I.
description During intense exercise or electrical stimulation of skeletal muscle the concentrations of several ions change simultaneously in interstitial, transverse tubular and intracellular compartments. Consequently the functional effects of multiple ionic changes need to be considered together. A diminished transsarcolemmal K + gradient per se can reduce maximal force in non-fatigued muscle suggesting that K + causes fatigue. However, this effect requires extremely large, although physiological, K + shifts. In contrast, moderate elevations of extracellular [K + ] ([K + ] o ) potentiate submaximal contractions, enhance local blood flow and influence afferent feedback to assist exercise performance. Changed transsarcolemmal Na + , Ca 2+ , Cl − and H + gradients are insufficient by themselves to cause much fatigue but each ion can interact with K + effects. Lowered Na + , Ca 2+ and Cl − gradients further impair force by modulating the peak tetanic force–[K + ] o and peak tetanic force–resting membrane potential relationships. In contrast, raised [Ca 2+ ] o , acidosis and reduced Cl − conductance during late fatigue provide resistance against K + -induced force depression. The detrimental effects of K + are exacerbated by metabolic changes such as lowered [ATP] i , depleted carbohydrate, and possibly reactive oxygen species. We hypothesize that during high-intensity exercise a rundown of the transsarcolemmal K + gradient is the dominant cellular process around which interactions with other ions and metabolites occur, thereby contributing to fatigue.
doi_str_mv 10.1113/jphysiol.2008.155424
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2652190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19313561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5879-de03e7f8433b2bc9a03d5184e3adf4b57ee09f73793140e6fc37bed57973043a3</originalsourceid><addsrcrecordid>eNqNkM1P3DAQxS1UBFvof4CqnCr1kK0ntuP4QlVR-oGQ4EDPluNMdk298RI7Rfvf1yhLP26cRqN5vzdPj5AzoEsAYB_ut-tddMEvK0qbJQjBK35AFsBrVUqp2CuyoLSqSiYFHJPXMd5TCowqdUSOoREKoJELcvk5FJvJJ7f1WLgwOFu4IeFobMpbLGwY0ujaKWGRQhF_osdkfEaizUBvkltN-PGUHPbGR3yznyfkx5fLu4tv5fXN1-8Xn65LKxqpyg4pQ9k3nLG2aq0ylHUCGo7MdD1vhUSkqpcspwdOse4tky12QirJKGeGnZDz2Xc7tRvsLOZwxuvt6DZm3OlgnP7_Mri1XoVfuqpFBYpmg3d7gzE8TBiT3rho0XszYJiihvyZiRqykM9CO4YYR-z_PAGqn_rXz_3rp_713H_G3v4b8C-0LzwL1Cx4dB53LzLVd1e3lVIqs-9ndu1W60c3op7VMViHaadFU2uQmlOm2G95wqYS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19313561</pqid></control><display><type>article</type><title>Do multiple ionic interactions contribute to skeletal muscle fatigue?</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Cairns, S. P. ; Lindinger, M. I.</creator><creatorcontrib>Cairns, S. P. ; Lindinger, M. I.</creatorcontrib><description>During intense exercise or electrical stimulation of skeletal muscle the concentrations of several ions change simultaneously in interstitial, transverse tubular and intracellular compartments. Consequently the functional effects of multiple ionic changes need to be considered together. A diminished transsarcolemmal K + gradient per se can reduce maximal force in non-fatigued muscle suggesting that K + causes fatigue. However, this effect requires extremely large, although physiological, K + shifts. In contrast, moderate elevations of extracellular [K + ] ([K + ] o ) potentiate submaximal contractions, enhance local blood flow and influence afferent feedback to assist exercise performance. Changed transsarcolemmal Na + , Ca 2+ , Cl − and H + gradients are insufficient by themselves to cause much fatigue but each ion can interact with K + effects. Lowered Na + , Ca 2+ and Cl − gradients further impair force by modulating the peak tetanic force–[K + ] o and peak tetanic force–resting membrane potential relationships. In contrast, raised [Ca 2+ ] o , acidosis and reduced Cl − conductance during late fatigue provide resistance against K + -induced force depression. The detrimental effects of K + are exacerbated by metabolic changes such as lowered [ATP] i , depleted carbohydrate, and possibly reactive oxygen species. We hypothesize that during high-intensity exercise a rundown of the transsarcolemmal K + gradient is the dominant cellular process around which interactions with other ions and metabolites occur, thereby contributing to fatigue.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2008.155424</identifier><identifier>PMID: 18591187</identifier><language>eng</language><publisher>Oxford, UK: The Physiological Society</publisher><subject>Animals ; Humans ; Ions - metabolism ; Mice ; Muscle Fatigue - physiology ; Muscle, Skeletal - physiology ; Topical Reviews</subject><ispartof>The Journal of physiology, 2008-09, Vol.586 (17), p.4039-4054</ispartof><rights>2008 The Authors. Journal compilation © 2008 The Physiological Society</rights><rights>Journal compilation © 2008 The Physiological Society 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5879-de03e7f8433b2bc9a03d5184e3adf4b57ee09f73793140e6fc37bed57973043a3</citedby><cites>FETCH-LOGICAL-c5879-de03e7f8433b2bc9a03d5184e3adf4b57ee09f73793140e6fc37bed57973043a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652190/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652190/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18591187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cairns, S. P.</creatorcontrib><creatorcontrib>Lindinger, M. I.</creatorcontrib><title>Do multiple ionic interactions contribute to skeletal muscle fatigue?</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>During intense exercise or electrical stimulation of skeletal muscle the concentrations of several ions change simultaneously in interstitial, transverse tubular and intracellular compartments. Consequently the functional effects of multiple ionic changes need to be considered together. A diminished transsarcolemmal K + gradient per se can reduce maximal force in non-fatigued muscle suggesting that K + causes fatigue. However, this effect requires extremely large, although physiological, K + shifts. In contrast, moderate elevations of extracellular [K + ] ([K + ] o ) potentiate submaximal contractions, enhance local blood flow and influence afferent feedback to assist exercise performance. Changed transsarcolemmal Na + , Ca 2+ , Cl − and H + gradients are insufficient by themselves to cause much fatigue but each ion can interact with K + effects. Lowered Na + , Ca 2+ and Cl − gradients further impair force by modulating the peak tetanic force–[K + ] o and peak tetanic force–resting membrane potential relationships. In contrast, raised [Ca 2+ ] o , acidosis and reduced Cl − conductance during late fatigue provide resistance against K + -induced force depression. The detrimental effects of K + are exacerbated by metabolic changes such as lowered [ATP] i , depleted carbohydrate, and possibly reactive oxygen species. We hypothesize that during high-intensity exercise a rundown of the transsarcolemmal K + gradient is the dominant cellular process around which interactions with other ions and metabolites occur, thereby contributing to fatigue.</description><subject>Animals</subject><subject>Humans</subject><subject>Ions - metabolism</subject><subject>Mice</subject><subject>Muscle Fatigue - physiology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Topical Reviews</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1P3DAQxS1UBFvof4CqnCr1kK0ntuP4QlVR-oGQ4EDPluNMdk298RI7Rfvf1yhLP26cRqN5vzdPj5AzoEsAYB_ut-tddMEvK0qbJQjBK35AFsBrVUqp2CuyoLSqSiYFHJPXMd5TCowqdUSOoREKoJELcvk5FJvJJ7f1WLgwOFu4IeFobMpbLGwY0ujaKWGRQhF_osdkfEaizUBvkltN-PGUHPbGR3yznyfkx5fLu4tv5fXN1-8Xn65LKxqpyg4pQ9k3nLG2aq0ylHUCGo7MdD1vhUSkqpcspwdOse4tky12QirJKGeGnZDz2Xc7tRvsLOZwxuvt6DZm3OlgnP7_Mri1XoVfuqpFBYpmg3d7gzE8TBiT3rho0XszYJiihvyZiRqykM9CO4YYR-z_PAGqn_rXz_3rp_713H_G3v4b8C-0LzwL1Cx4dB53LzLVd1e3lVIqs-9ndu1W60c3op7VMViHaadFU2uQmlOm2G95wqYS</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Cairns, S. P.</creator><creator>Lindinger, M. I.</creator><general>The Physiological Society</general><general>Blackwell Publishing Ltd</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>5PM</scope></search><sort><creationdate>200809</creationdate><title>Do multiple ionic interactions contribute to skeletal muscle fatigue?</title><author>Cairns, S. P. ; Lindinger, M. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5879-de03e7f8433b2bc9a03d5184e3adf4b57ee09f73793140e6fc37bed57973043a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Humans</topic><topic>Ions - metabolism</topic><topic>Mice</topic><topic>Muscle Fatigue - physiology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Topical Reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cairns, S. P.</creatorcontrib><creatorcontrib>Lindinger, M. I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cairns, S. P.</au><au>Lindinger, M. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do multiple ionic interactions contribute to skeletal muscle fatigue?</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2008-09</date><risdate>2008</risdate><volume>586</volume><issue>17</issue><spage>4039</spage><epage>4054</epage><pages>4039-4054</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>During intense exercise or electrical stimulation of skeletal muscle the concentrations of several ions change simultaneously in interstitial, transverse tubular and intracellular compartments. Consequently the functional effects of multiple ionic changes need to be considered together. A diminished transsarcolemmal K + gradient per se can reduce maximal force in non-fatigued muscle suggesting that K + causes fatigue. However, this effect requires extremely large, although physiological, K + shifts. In contrast, moderate elevations of extracellular [K + ] ([K + ] o ) potentiate submaximal contractions, enhance local blood flow and influence afferent feedback to assist exercise performance. Changed transsarcolemmal Na + , Ca 2+ , Cl − and H + gradients are insufficient by themselves to cause much fatigue but each ion can interact with K + effects. Lowered Na + , Ca 2+ and Cl − gradients further impair force by modulating the peak tetanic force–[K + ] o and peak tetanic force–resting membrane potential relationships. In contrast, raised [Ca 2+ ] o , acidosis and reduced Cl − conductance during late fatigue provide resistance against K + -induced force depression. The detrimental effects of K + are exacerbated by metabolic changes such as lowered [ATP] i , depleted carbohydrate, and possibly reactive oxygen species. We hypothesize that during high-intensity exercise a rundown of the transsarcolemmal K + gradient is the dominant cellular process around which interactions with other ions and metabolites occur, thereby contributing to fatigue.</abstract><cop>Oxford, UK</cop><pub>The Physiological Society</pub><pmid>18591187</pmid><doi>10.1113/jphysiol.2008.155424</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2008-09, Vol.586 (17), p.4039-4054
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2652190
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Humans
Ions - metabolism
Mice
Muscle Fatigue - physiology
Muscle, Skeletal - physiology
Topical Reviews
title Do multiple ionic interactions contribute to skeletal muscle fatigue?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%20multiple%20ionic%20interactions%20contribute%20to%20skeletal%20muscle%20fatigue?&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Cairns,%20S.%20P.&rft.date=2008-09&rft.volume=586&rft.issue=17&rft.spage=4039&rft.epage=4054&rft.pages=4039-4054&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.2008.155424&rft_dat=%3Cproquest_pubme%3E19313561%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19313561&rft_id=info:pmid/18591187&rfr_iscdi=true