Do multiple ionic interactions contribute to skeletal muscle fatigue?
During intense exercise or electrical stimulation of skeletal muscle the concentrations of several ions change simultaneously in interstitial, transverse tubular and intracellular compartments. Consequently the functional effects of multiple ionic changes need to be considered together. A diminished...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 2008-09, Vol.586 (17), p.4039-4054 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4054 |
---|---|
container_issue | 17 |
container_start_page | 4039 |
container_title | The Journal of physiology |
container_volume | 586 |
creator | Cairns, S. P. Lindinger, M. I. |
description | During intense exercise or electrical stimulation of skeletal muscle the concentrations of several ions change simultaneously
in interstitial, transverse tubular and intracellular compartments. Consequently the functional effects of multiple ionic
changes need to be considered together. A diminished transsarcolemmal K + gradient per se can reduce maximal force in non-fatigued muscle suggesting that K + causes fatigue. However, this effect requires extremely large, although physiological, K + shifts. In contrast, moderate elevations of extracellular [K + ] ([K + ] o ) potentiate submaximal contractions, enhance local blood flow and influence afferent feedback to assist exercise performance.
Changed transsarcolemmal Na + , Ca 2+ , Cl â and H + gradients are insufficient by themselves to cause much fatigue but each ion can interact with K + effects. Lowered Na + , Ca 2+ and Cl â gradients further impair force by modulating the peak tetanic forceâ[K + ] o and peak tetanic forceâresting membrane potential relationships. In contrast, raised [Ca 2+ ] o , acidosis and reduced Cl â conductance during late fatigue provide resistance against K + -induced force depression. The detrimental effects of K + are exacerbated by metabolic changes such as lowered [ATP] i , depleted carbohydrate, and possibly reactive oxygen species. We hypothesize that during high-intensity exercise a rundown
of the transsarcolemmal K + gradient is the dominant cellular process around which interactions with other ions and metabolites occur, thereby contributing
to fatigue. |
doi_str_mv | 10.1113/jphysiol.2008.155424 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2652190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19313561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5879-de03e7f8433b2bc9a03d5184e3adf4b57ee09f73793140e6fc37bed57973043a3</originalsourceid><addsrcrecordid>eNqNkM1P3DAQxS1UBFvof4CqnCr1kK0ntuP4QlVR-oGQ4EDPluNMdk298RI7Rfvf1yhLP26cRqN5vzdPj5AzoEsAYB_ut-tddMEvK0qbJQjBK35AFsBrVUqp2CuyoLSqSiYFHJPXMd5TCowqdUSOoREKoJELcvk5FJvJJ7f1WLgwOFu4IeFobMpbLGwY0ujaKWGRQhF_osdkfEaizUBvkltN-PGUHPbGR3yznyfkx5fLu4tv5fXN1-8Xn65LKxqpyg4pQ9k3nLG2aq0ylHUCGo7MdD1vhUSkqpcspwdOse4tky12QirJKGeGnZDz2Xc7tRvsLOZwxuvt6DZm3OlgnP7_Mri1XoVfuqpFBYpmg3d7gzE8TBiT3rho0XszYJiihvyZiRqykM9CO4YYR-z_PAGqn_rXz_3rp_713H_G3v4b8C-0LzwL1Cx4dB53LzLVd1e3lVIqs-9ndu1W60c3op7VMViHaadFU2uQmlOm2G95wqYS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19313561</pqid></control><display><type>article</type><title>Do multiple ionic interactions contribute to skeletal muscle fatigue?</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Cairns, S. P. ; Lindinger, M. I.</creator><creatorcontrib>Cairns, S. P. ; Lindinger, M. I.</creatorcontrib><description>During intense exercise or electrical stimulation of skeletal muscle the concentrations of several ions change simultaneously
in interstitial, transverse tubular and intracellular compartments. Consequently the functional effects of multiple ionic
changes need to be considered together. A diminished transsarcolemmal K + gradient per se can reduce maximal force in non-fatigued muscle suggesting that K + causes fatigue. However, this effect requires extremely large, although physiological, K + shifts. In contrast, moderate elevations of extracellular [K + ] ([K + ] o ) potentiate submaximal contractions, enhance local blood flow and influence afferent feedback to assist exercise performance.
Changed transsarcolemmal Na + , Ca 2+ , Cl â and H + gradients are insufficient by themselves to cause much fatigue but each ion can interact with K + effects. Lowered Na + , Ca 2+ and Cl â gradients further impair force by modulating the peak tetanic forceâ[K + ] o and peak tetanic forceâresting membrane potential relationships. In contrast, raised [Ca 2+ ] o , acidosis and reduced Cl â conductance during late fatigue provide resistance against K + -induced force depression. The detrimental effects of K + are exacerbated by metabolic changes such as lowered [ATP] i , depleted carbohydrate, and possibly reactive oxygen species. We hypothesize that during high-intensity exercise a rundown
of the transsarcolemmal K + gradient is the dominant cellular process around which interactions with other ions and metabolites occur, thereby contributing
to fatigue.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2008.155424</identifier><identifier>PMID: 18591187</identifier><language>eng</language><publisher>Oxford, UK: The Physiological Society</publisher><subject>Animals ; Humans ; Ions - metabolism ; Mice ; Muscle Fatigue - physiology ; Muscle, Skeletal - physiology ; Topical Reviews</subject><ispartof>The Journal of physiology, 2008-09, Vol.586 (17), p.4039-4054</ispartof><rights>2008 The Authors. Journal compilation © 2008 The Physiological Society</rights><rights>Journal compilation © 2008 The Physiological Society 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5879-de03e7f8433b2bc9a03d5184e3adf4b57ee09f73793140e6fc37bed57973043a3</citedby><cites>FETCH-LOGICAL-c5879-de03e7f8433b2bc9a03d5184e3adf4b57ee09f73793140e6fc37bed57973043a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652190/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652190/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18591187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cairns, S. P.</creatorcontrib><creatorcontrib>Lindinger, M. I.</creatorcontrib><title>Do multiple ionic interactions contribute to skeletal muscle fatigue?</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>During intense exercise or electrical stimulation of skeletal muscle the concentrations of several ions change simultaneously
in interstitial, transverse tubular and intracellular compartments. Consequently the functional effects of multiple ionic
changes need to be considered together. A diminished transsarcolemmal K + gradient per se can reduce maximal force in non-fatigued muscle suggesting that K + causes fatigue. However, this effect requires extremely large, although physiological, K + shifts. In contrast, moderate elevations of extracellular [K + ] ([K + ] o ) potentiate submaximal contractions, enhance local blood flow and influence afferent feedback to assist exercise performance.
Changed transsarcolemmal Na + , Ca 2+ , Cl â and H + gradients are insufficient by themselves to cause much fatigue but each ion can interact with K + effects. Lowered Na + , Ca 2+ and Cl â gradients further impair force by modulating the peak tetanic forceâ[K + ] o and peak tetanic forceâresting membrane potential relationships. In contrast, raised [Ca 2+ ] o , acidosis and reduced Cl â conductance during late fatigue provide resistance against K + -induced force depression. The detrimental effects of K + are exacerbated by metabolic changes such as lowered [ATP] i , depleted carbohydrate, and possibly reactive oxygen species. We hypothesize that during high-intensity exercise a rundown
of the transsarcolemmal K + gradient is the dominant cellular process around which interactions with other ions and metabolites occur, thereby contributing
to fatigue.</description><subject>Animals</subject><subject>Humans</subject><subject>Ions - metabolism</subject><subject>Mice</subject><subject>Muscle Fatigue - physiology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Topical Reviews</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1P3DAQxS1UBFvof4CqnCr1kK0ntuP4QlVR-oGQ4EDPluNMdk298RI7Rfvf1yhLP26cRqN5vzdPj5AzoEsAYB_ut-tddMEvK0qbJQjBK35AFsBrVUqp2CuyoLSqSiYFHJPXMd5TCowqdUSOoREKoJELcvk5FJvJJ7f1WLgwOFu4IeFobMpbLGwY0ujaKWGRQhF_osdkfEaizUBvkltN-PGUHPbGR3yznyfkx5fLu4tv5fXN1-8Xn65LKxqpyg4pQ9k3nLG2aq0ylHUCGo7MdD1vhUSkqpcspwdOse4tky12QirJKGeGnZDz2Xc7tRvsLOZwxuvt6DZm3OlgnP7_Mri1XoVfuqpFBYpmg3d7gzE8TBiT3rho0XszYJiihvyZiRqykM9CO4YYR-z_PAGqn_rXz_3rp_713H_G3v4b8C-0LzwL1Cx4dB53LzLVd1e3lVIqs-9ndu1W60c3op7VMViHaadFU2uQmlOm2G95wqYS</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Cairns, S. P.</creator><creator>Lindinger, M. I.</creator><general>The Physiological Society</general><general>Blackwell Publishing Ltd</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>5PM</scope></search><sort><creationdate>200809</creationdate><title>Do multiple ionic interactions contribute to skeletal muscle fatigue?</title><author>Cairns, S. P. ; Lindinger, M. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5879-de03e7f8433b2bc9a03d5184e3adf4b57ee09f73793140e6fc37bed57973043a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Humans</topic><topic>Ions - metabolism</topic><topic>Mice</topic><topic>Muscle Fatigue - physiology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Topical Reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cairns, S. P.</creatorcontrib><creatorcontrib>Lindinger, M. I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cairns, S. P.</au><au>Lindinger, M. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do multiple ionic interactions contribute to skeletal muscle fatigue?</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2008-09</date><risdate>2008</risdate><volume>586</volume><issue>17</issue><spage>4039</spage><epage>4054</epage><pages>4039-4054</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>During intense exercise or electrical stimulation of skeletal muscle the concentrations of several ions change simultaneously
in interstitial, transverse tubular and intracellular compartments. Consequently the functional effects of multiple ionic
changes need to be considered together. A diminished transsarcolemmal K + gradient per se can reduce maximal force in non-fatigued muscle suggesting that K + causes fatigue. However, this effect requires extremely large, although physiological, K + shifts. In contrast, moderate elevations of extracellular [K + ] ([K + ] o ) potentiate submaximal contractions, enhance local blood flow and influence afferent feedback to assist exercise performance.
Changed transsarcolemmal Na + , Ca 2+ , Cl â and H + gradients are insufficient by themselves to cause much fatigue but each ion can interact with K + effects. Lowered Na + , Ca 2+ and Cl â gradients further impair force by modulating the peak tetanic forceâ[K + ] o and peak tetanic forceâresting membrane potential relationships. In contrast, raised [Ca 2+ ] o , acidosis and reduced Cl â conductance during late fatigue provide resistance against K + -induced force depression. The detrimental effects of K + are exacerbated by metabolic changes such as lowered [ATP] i , depleted carbohydrate, and possibly reactive oxygen species. We hypothesize that during high-intensity exercise a rundown
of the transsarcolemmal K + gradient is the dominant cellular process around which interactions with other ions and metabolites occur, thereby contributing
to fatigue.</abstract><cop>Oxford, UK</cop><pub>The Physiological Society</pub><pmid>18591187</pmid><doi>10.1113/jphysiol.2008.155424</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3751 |
ispartof | The Journal of physiology, 2008-09, Vol.586 (17), p.4039-4054 |
issn | 0022-3751 1469-7793 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2652190 |
source | Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Humans Ions - metabolism Mice Muscle Fatigue - physiology Muscle, Skeletal - physiology Topical Reviews |
title | Do multiple ionic interactions contribute to skeletal muscle fatigue? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%20multiple%20ionic%20interactions%20contribute%20to%20skeletal%20muscle%20fatigue?&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Cairns,%20S.%20P.&rft.date=2008-09&rft.volume=586&rft.issue=17&rft.spage=4039&rft.epage=4054&rft.pages=4039-4054&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.2008.155424&rft_dat=%3Cproquest_pubme%3E19313561%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19313561&rft_id=info:pmid/18591187&rfr_iscdi=true |