Dopamine D2-Receptor-Mediated Increase in Vascular and Endothelial NOS Activity Ameliorates Cerebral Vasospasm After Subarachnoid Hemorrhage In Vitro

Introduction Cerebral vasospasm after subarachnoid hemorrhage (SAH) is a serious complication resulting in delayed neurological deficit, increased morbidity, mortality, longer hospital stays, and rehabilitation time. It afflicts approximately 35 per 100,000 Americans per year, and there is currently...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocritical care 2009-04, Vol.10 (2), p.225-231
Hauptverfasser: Pyne-Geithman, Gail J., Caudell, Danielle N., Cooper, Matthew, Clark, Joseph F., Shutter, Lori A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction Cerebral vasospasm after subarachnoid hemorrhage (SAH) is a serious complication resulting in delayed neurological deficit, increased morbidity, mortality, longer hospital stays, and rehabilitation time. It afflicts approximately 35 per 100,000 Americans per year, and there is currently no effective therapy. We present in vitro data suggesting that increasing intrinsic nitric oxide relaxation pathways in vascular smooth muscle via dopaminergic agonism ameliorates cerebral vasospasm after SAH. Methods Cerebrospinal fluid (CSF) from patients with cerebral vasospasm after SAH (CSF V ) was used to induce vasospasm in porcine carotid artery in vitro. Dopamine was added to test its ability to reverse spasm, and specific dopamine receptor antagonists were used to determine which receptor mediated the protection. Immunohistochemical techniques confirmed the presence of dopamine receptor subtypes and the involvement of NOS in the mechanism of dopamine protection. Results Dopamine receptor 1, 2, and 3 subtypes are all present in porcine carotid artery. Dopamine significantly reversed spasm in vitro (67% relaxation), and this relaxation was prevented by Haloperidol, a D 2 R antagonist (10% relaxation, P  
ISSN:1541-6933
1556-0961
DOI:10.1007/s12028-008-9143-2