Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner
The connexin (Cx) 50, E48K, mutation is associated with a human dominant congenital cataract; however, the underlying molecular mechanism has not been characterized. The glutamate (E) residue at position 48 is highly conserved across animal species and types of connexins. When expressed in paired Xe...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 2009-02, Vol.122 (3), p.378-388 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 388 |
---|---|
container_issue | 3 |
container_start_page | 378 |
container_title | Journal of cell science |
container_volume | 122 |
creator | Banks, Eric A Toloue, Masoud M Shi, Qian Zhou, Zifei Jade Liu, Jialu Nicholson, Bruce J Jiang, Jean X |
description | The connexin (Cx) 50, E48K, mutation is associated with a human dominant congenital cataract; however, the underlying molecular mechanism has not been characterized. The glutamate (E) residue at position 48 is highly conserved across animal species and types of connexins. When expressed in paired Xenopus oocytes, human (h) and chicken (ch) Cx50 E48K mutants showed no electrical coupling. In addition, this mutation acts in a dominant negative manner when paired hetero-typically or hetero-merically with wild-type Cx50, but has no such effect on Cx46, the other lens fiber connexin. A similar loss-of-function and dominant negative effect was observed using dye transfer assays in the same system. By using two different dye transfer methods, with two different tracer dyes, we found chCx50 E48K expressed in chicken lens embryonic fibroblast cells by retroviral infection similarly failed to induce dye coupling, and prevented wild-type chCx50 from forming functional gap junctions. In contrast to its effect on gap junctions, the E48K mutation has no effect on hemichannel activity when assayed using electrical conductance in oocytes, and mechanically induced dye uptake in cells. Cx50 is functionally involved in cell differentiation and lens development, and the E48K mutant promotes primary lens cell differentiation indistinguishable from wild-type chCx50, despite its lack of junctional channel function. Together the data show that mutations affecting gap junctions but not hemichannel function of Cx50 can lead to dominant congenital cataracts in humans. This clearly supports the model of intercellular coupling of fiber cells creating a microcirculation of nutrients and metabolites required for lens transparency. |
doi_str_mv | 10.1242/jcs.034124 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2650834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19126675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-448b47a5f8b39d3e7c5d456d8a51b260164c095f8e45c5cb1ad0985cda938c573</originalsourceid><addsrcrecordid>eNpVUU1P3DAUtCpQ2S5c-gNanxEBO7bj-IJUrYAiIXEAztaL40282tir2FmVX9C_jVdBpZzex8ybkd4g9J2SS1ry8mpj4iVhPPdf0IJyKQtFmTxCC0JKWijB2An6FuOGECJLJb-iE6poWVVSLNDfVfDe_nEeD1OC5ILHqYeEDUzRRtyGwXnweQ6-s94l2GYowQgmRex87xqXmw52eDN5c7iPF7iZEvYh4d4OzvSQDbZ5mz3gQ9DbLtvtLR4O-HiKjtewjfbsvS7Ry-3N8-p38fB4d7_69VAYzkQqOK8bLkGs64aplllpRMtF1dYgaFNWhFbcEJVhy4URpqHQElUL04JitRGSLdH1rLubmsG2xvo0wlbvRjfA-KoDOP0Z8a7XXdjrshKkZjwLnM8CZgwxjnb975YSfYhD5zj0HEcm__jf7YP6_v9M-DkT1hA0dKOL-uWpJJQRKmpBiWJvvMWThA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Banks, Eric A ; Toloue, Masoud M ; Shi, Qian ; Zhou, Zifei Jade ; Liu, Jialu ; Nicholson, Bruce J ; Jiang, Jean X</creator><creatorcontrib>Banks, Eric A ; Toloue, Masoud M ; Shi, Qian ; Zhou, Zifei Jade ; Liu, Jialu ; Nicholson, Bruce J ; Jiang, Jean X</creatorcontrib><description>The connexin (Cx) 50, E48K, mutation is associated with a human dominant congenital cataract; however, the underlying molecular mechanism has not been characterized. The glutamate (E) residue at position 48 is highly conserved across animal species and types of connexins. When expressed in paired Xenopus oocytes, human (h) and chicken (ch) Cx50 E48K mutants showed no electrical coupling. In addition, this mutation acts in a dominant negative manner when paired hetero-typically or hetero-merically with wild-type Cx50, but has no such effect on Cx46, the other lens fiber connexin. A similar loss-of-function and dominant negative effect was observed using dye transfer assays in the same system. By using two different dye transfer methods, with two different tracer dyes, we found chCx50 E48K expressed in chicken lens embryonic fibroblast cells by retroviral infection similarly failed to induce dye coupling, and prevented wild-type chCx50 from forming functional gap junctions. In contrast to its effect on gap junctions, the E48K mutation has no effect on hemichannel activity when assayed using electrical conductance in oocytes, and mechanically induced dye uptake in cells. Cx50 is functionally involved in cell differentiation and lens development, and the E48K mutant promotes primary lens cell differentiation indistinguishable from wild-type chCx50, despite its lack of junctional channel function. Together the data show that mutations affecting gap junctions but not hemichannel function of Cx50 can lead to dominant congenital cataracts in humans. This clearly supports the model of intercellular coupling of fiber cells creating a microcirculation of nutrients and metabolites required for lens transparency.</description><identifier>ISSN: 0021-9533</identifier><identifier>EISSN: 1477-9137</identifier><identifier>DOI: 10.1242/jcs.034124</identifier><identifier>PMID: 19126675</identifier><language>eng</language><publisher>England: The Company of Biologists Limited</publisher><subject>Amino Acid Sequence ; Animals ; Cataract - genetics ; Cataract - metabolism ; Cattle ; Chick Embryo ; Connexins - genetics ; Connexins - metabolism ; Eye Proteins - genetics ; Eye Proteins - metabolism ; Gap Junctions - genetics ; Gap Junctions - metabolism ; Genes, Dominant ; Genetic Vectors ; Humans ; Lens, Crystalline - metabolism ; Mice ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation - genetics ; Oocytes ; Rats ; Sequence Alignment ; Transfection ; Xenopus laevis</subject><ispartof>Journal of cell science, 2009-02, Vol.122 (3), p.378-388</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-448b47a5f8b39d3e7c5d456d8a51b260164c095f8e45c5cb1ad0985cda938c573</citedby><cites>FETCH-LOGICAL-c435t-448b47a5f8b39d3e7c5d456d8a51b260164c095f8e45c5cb1ad0985cda938c573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3678,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19126675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Banks, Eric A</creatorcontrib><creatorcontrib>Toloue, Masoud M</creatorcontrib><creatorcontrib>Shi, Qian</creatorcontrib><creatorcontrib>Zhou, Zifei Jade</creatorcontrib><creatorcontrib>Liu, Jialu</creatorcontrib><creatorcontrib>Nicholson, Bruce J</creatorcontrib><creatorcontrib>Jiang, Jean X</creatorcontrib><title>Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner</title><title>Journal of cell science</title><addtitle>J Cell Sci</addtitle><description>The connexin (Cx) 50, E48K, mutation is associated with a human dominant congenital cataract; however, the underlying molecular mechanism has not been characterized. The glutamate (E) residue at position 48 is highly conserved across animal species and types of connexins. When expressed in paired Xenopus oocytes, human (h) and chicken (ch) Cx50 E48K mutants showed no electrical coupling. In addition, this mutation acts in a dominant negative manner when paired hetero-typically or hetero-merically with wild-type Cx50, but has no such effect on Cx46, the other lens fiber connexin. A similar loss-of-function and dominant negative effect was observed using dye transfer assays in the same system. By using two different dye transfer methods, with two different tracer dyes, we found chCx50 E48K expressed in chicken lens embryonic fibroblast cells by retroviral infection similarly failed to induce dye coupling, and prevented wild-type chCx50 from forming functional gap junctions. In contrast to its effect on gap junctions, the E48K mutation has no effect on hemichannel activity when assayed using electrical conductance in oocytes, and mechanically induced dye uptake in cells. Cx50 is functionally involved in cell differentiation and lens development, and the E48K mutant promotes primary lens cell differentiation indistinguishable from wild-type chCx50, despite its lack of junctional channel function. Together the data show that mutations affecting gap junctions but not hemichannel function of Cx50 can lead to dominant congenital cataracts in humans. This clearly supports the model of intercellular coupling of fiber cells creating a microcirculation of nutrients and metabolites required for lens transparency.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Cataract - genetics</subject><subject>Cataract - metabolism</subject><subject>Cattle</subject><subject>Chick Embryo</subject><subject>Connexins - genetics</subject><subject>Connexins - metabolism</subject><subject>Eye Proteins - genetics</subject><subject>Eye Proteins - metabolism</subject><subject>Gap Junctions - genetics</subject><subject>Gap Junctions - metabolism</subject><subject>Genes, Dominant</subject><subject>Genetic Vectors</subject><subject>Humans</subject><subject>Lens, Crystalline - metabolism</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation - genetics</subject><subject>Oocytes</subject><subject>Rats</subject><subject>Sequence Alignment</subject><subject>Transfection</subject><subject>Xenopus laevis</subject><issn>0021-9533</issn><issn>1477-9137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1P3DAUtCpQ2S5c-gNanxEBO7bj-IJUrYAiIXEAztaL40282tir2FmVX9C_jVdBpZzex8ybkd4g9J2SS1ry8mpj4iVhPPdf0IJyKQtFmTxCC0JKWijB2An6FuOGECJLJb-iE6poWVVSLNDfVfDe_nEeD1OC5ILHqYeEDUzRRtyGwXnweQ6-s94l2GYowQgmRex87xqXmw52eDN5c7iPF7iZEvYh4d4OzvSQDbZ5mz3gQ9DbLtvtLR4O-HiKjtewjfbsvS7Ry-3N8-p38fB4d7_69VAYzkQqOK8bLkGs64aplllpRMtF1dYgaFNWhFbcEJVhy4URpqHQElUL04JitRGSLdH1rLubmsG2xvo0wlbvRjfA-KoDOP0Z8a7XXdjrshKkZjwLnM8CZgwxjnb975YSfYhD5zj0HEcm__jf7YP6_v9M-DkT1hA0dKOL-uWpJJQRKmpBiWJvvMWThA</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Banks, Eric A</creator><creator>Toloue, Masoud M</creator><creator>Shi, Qian</creator><creator>Zhou, Zifei Jade</creator><creator>Liu, Jialu</creator><creator>Nicholson, Bruce J</creator><creator>Jiang, Jean X</creator><general>The Company of Biologists Limited</general><general>Company of Biologists</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20090201</creationdate><title>Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner</title><author>Banks, Eric A ; Toloue, Masoud M ; Shi, Qian ; Zhou, Zifei Jade ; Liu, Jialu ; Nicholson, Bruce J ; Jiang, Jean X</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-448b47a5f8b39d3e7c5d456d8a51b260164c095f8e45c5cb1ad0985cda938c573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Cataract - genetics</topic><topic>Cataract - metabolism</topic><topic>Cattle</topic><topic>Chick Embryo</topic><topic>Connexins - genetics</topic><topic>Connexins - metabolism</topic><topic>Eye Proteins - genetics</topic><topic>Eye Proteins - metabolism</topic><topic>Gap Junctions - genetics</topic><topic>Gap Junctions - metabolism</topic><topic>Genes, Dominant</topic><topic>Genetic Vectors</topic><topic>Humans</topic><topic>Lens, Crystalline - metabolism</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation - genetics</topic><topic>Oocytes</topic><topic>Rats</topic><topic>Sequence Alignment</topic><topic>Transfection</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banks, Eric A</creatorcontrib><creatorcontrib>Toloue, Masoud M</creatorcontrib><creatorcontrib>Shi, Qian</creatorcontrib><creatorcontrib>Zhou, Zifei Jade</creatorcontrib><creatorcontrib>Liu, Jialu</creatorcontrib><creatorcontrib>Nicholson, Bruce J</creatorcontrib><creatorcontrib>Jiang, Jean X</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cell science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banks, Eric A</au><au>Toloue, Masoud M</au><au>Shi, Qian</au><au>Zhou, Zifei Jade</au><au>Liu, Jialu</au><au>Nicholson, Bruce J</au><au>Jiang, Jean X</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner</atitle><jtitle>Journal of cell science</jtitle><addtitle>J Cell Sci</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>122</volume><issue>3</issue><spage>378</spage><epage>388</epage><pages>378-388</pages><issn>0021-9533</issn><eissn>1477-9137</eissn><abstract>The connexin (Cx) 50, E48K, mutation is associated with a human dominant congenital cataract; however, the underlying molecular mechanism has not been characterized. The glutamate (E) residue at position 48 is highly conserved across animal species and types of connexins. When expressed in paired Xenopus oocytes, human (h) and chicken (ch) Cx50 E48K mutants showed no electrical coupling. In addition, this mutation acts in a dominant negative manner when paired hetero-typically or hetero-merically with wild-type Cx50, but has no such effect on Cx46, the other lens fiber connexin. A similar loss-of-function and dominant negative effect was observed using dye transfer assays in the same system. By using two different dye transfer methods, with two different tracer dyes, we found chCx50 E48K expressed in chicken lens embryonic fibroblast cells by retroviral infection similarly failed to induce dye coupling, and prevented wild-type chCx50 from forming functional gap junctions. In contrast to its effect on gap junctions, the E48K mutation has no effect on hemichannel activity when assayed using electrical conductance in oocytes, and mechanically induced dye uptake in cells. Cx50 is functionally involved in cell differentiation and lens development, and the E48K mutant promotes primary lens cell differentiation indistinguishable from wild-type chCx50, despite its lack of junctional channel function. Together the data show that mutations affecting gap junctions but not hemichannel function of Cx50 can lead to dominant congenital cataracts in humans. This clearly supports the model of intercellular coupling of fiber cells creating a microcirculation of nutrients and metabolites required for lens transparency.</abstract><cop>England</cop><pub>The Company of Biologists Limited</pub><pmid>19126675</pmid><doi>10.1242/jcs.034124</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9533 |
ispartof | Journal of cell science, 2009-02, Vol.122 (3), p.378-388 |
issn | 0021-9533 1477-9137 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2650834 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Company of Biologists |
subjects | Amino Acid Sequence Animals Cataract - genetics Cataract - metabolism Cattle Chick Embryo Connexins - genetics Connexins - metabolism Eye Proteins - genetics Eye Proteins - metabolism Gap Junctions - genetics Gap Junctions - metabolism Genes, Dominant Genetic Vectors Humans Lens, Crystalline - metabolism Mice Molecular Sequence Data Mutagenesis, Site-Directed Mutation - genetics Oocytes Rats Sequence Alignment Transfection Xenopus laevis |
title | Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connexin%20mutation%20that%20causes%20dominant%20congenital%20cataracts%20inhibits%20gap%20junctions,%20but%20not%20hemichannels,%20in%20a%20dominant%20negative%20manner&rft.jtitle=Journal%20of%20cell%20science&rft.au=Banks,%20Eric%20A&rft.date=2009-02-01&rft.volume=122&rft.issue=3&rft.spage=378&rft.epage=388&rft.pages=378-388&rft.issn=0021-9533&rft.eissn=1477-9137&rft_id=info:doi/10.1242/jcs.034124&rft_dat=%3Cpubmed_cross%3E19126675%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19126675&rfr_iscdi=true |