Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner

The connexin (Cx) 50, E48K, mutation is associated with a human dominant congenital cataract; however, the underlying molecular mechanism has not been characterized. The glutamate (E) residue at position 48 is highly conserved across animal species and types of connexins. When expressed in paired Xe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2009-02, Vol.122 (3), p.378-388
Hauptverfasser: Banks, Eric A, Toloue, Masoud M, Shi, Qian, Zhou, Zifei Jade, Liu, Jialu, Nicholson, Bruce J, Jiang, Jean X
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue 3
container_start_page 378
container_title Journal of cell science
container_volume 122
creator Banks, Eric A
Toloue, Masoud M
Shi, Qian
Zhou, Zifei Jade
Liu, Jialu
Nicholson, Bruce J
Jiang, Jean X
description The connexin (Cx) 50, E48K, mutation is associated with a human dominant congenital cataract; however, the underlying molecular mechanism has not been characterized. The glutamate (E) residue at position 48 is highly conserved across animal species and types of connexins. When expressed in paired Xenopus oocytes, human (h) and chicken (ch) Cx50 E48K mutants showed no electrical coupling. In addition, this mutation acts in a dominant negative manner when paired hetero-typically or hetero-merically with wild-type Cx50, but has no such effect on Cx46, the other lens fiber connexin. A similar loss-of-function and dominant negative effect was observed using dye transfer assays in the same system. By using two different dye transfer methods, with two different tracer dyes, we found chCx50 E48K expressed in chicken lens embryonic fibroblast cells by retroviral infection similarly failed to induce dye coupling, and prevented wild-type chCx50 from forming functional gap junctions. In contrast to its effect on gap junctions, the E48K mutation has no effect on hemichannel activity when assayed using electrical conductance in oocytes, and mechanically induced dye uptake in cells. Cx50 is functionally involved in cell differentiation and lens development, and the E48K mutant promotes primary lens cell differentiation indistinguishable from wild-type chCx50, despite its lack of junctional channel function. Together the data show that mutations affecting gap junctions but not hemichannel function of Cx50 can lead to dominant congenital cataracts in humans. This clearly supports the model of intercellular coupling of fiber cells creating a microcirculation of nutrients and metabolites required for lens transparency.
doi_str_mv 10.1242/jcs.034124
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2650834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19126675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-448b47a5f8b39d3e7c5d456d8a51b260164c095f8e45c5cb1ad0985cda938c573</originalsourceid><addsrcrecordid>eNpVUU1P3DAUtCpQ2S5c-gNanxEBO7bj-IJUrYAiIXEAztaL40282tir2FmVX9C_jVdBpZzex8ybkd4g9J2SS1ry8mpj4iVhPPdf0IJyKQtFmTxCC0JKWijB2An6FuOGECJLJb-iE6poWVVSLNDfVfDe_nEeD1OC5ILHqYeEDUzRRtyGwXnweQ6-s94l2GYowQgmRex87xqXmw52eDN5c7iPF7iZEvYh4d4OzvSQDbZ5mz3gQ9DbLtvtLR4O-HiKjtewjfbsvS7Ry-3N8-p38fB4d7_69VAYzkQqOK8bLkGs64aplllpRMtF1dYgaFNWhFbcEJVhy4URpqHQElUL04JitRGSLdH1rLubmsG2xvo0wlbvRjfA-KoDOP0Z8a7XXdjrshKkZjwLnM8CZgwxjnb975YSfYhD5zj0HEcm__jf7YP6_v9M-DkT1hA0dKOL-uWpJJQRKmpBiWJvvMWThA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Banks, Eric A ; Toloue, Masoud M ; Shi, Qian ; Zhou, Zifei Jade ; Liu, Jialu ; Nicholson, Bruce J ; Jiang, Jean X</creator><creatorcontrib>Banks, Eric A ; Toloue, Masoud M ; Shi, Qian ; Zhou, Zifei Jade ; Liu, Jialu ; Nicholson, Bruce J ; Jiang, Jean X</creatorcontrib><description>The connexin (Cx) 50, E48K, mutation is associated with a human dominant congenital cataract; however, the underlying molecular mechanism has not been characterized. The glutamate (E) residue at position 48 is highly conserved across animal species and types of connexins. When expressed in paired Xenopus oocytes, human (h) and chicken (ch) Cx50 E48K mutants showed no electrical coupling. In addition, this mutation acts in a dominant negative manner when paired hetero-typically or hetero-merically with wild-type Cx50, but has no such effect on Cx46, the other lens fiber connexin. A similar loss-of-function and dominant negative effect was observed using dye transfer assays in the same system. By using two different dye transfer methods, with two different tracer dyes, we found chCx50 E48K expressed in chicken lens embryonic fibroblast cells by retroviral infection similarly failed to induce dye coupling, and prevented wild-type chCx50 from forming functional gap junctions. In contrast to its effect on gap junctions, the E48K mutation has no effect on hemichannel activity when assayed using electrical conductance in oocytes, and mechanically induced dye uptake in cells. Cx50 is functionally involved in cell differentiation and lens development, and the E48K mutant promotes primary lens cell differentiation indistinguishable from wild-type chCx50, despite its lack of junctional channel function. Together the data show that mutations affecting gap junctions but not hemichannel function of Cx50 can lead to dominant congenital cataracts in humans. This clearly supports the model of intercellular coupling of fiber cells creating a microcirculation of nutrients and metabolites required for lens transparency.</description><identifier>ISSN: 0021-9533</identifier><identifier>EISSN: 1477-9137</identifier><identifier>DOI: 10.1242/jcs.034124</identifier><identifier>PMID: 19126675</identifier><language>eng</language><publisher>England: The Company of Biologists Limited</publisher><subject>Amino Acid Sequence ; Animals ; Cataract - genetics ; Cataract - metabolism ; Cattle ; Chick Embryo ; Connexins - genetics ; Connexins - metabolism ; Eye Proteins - genetics ; Eye Proteins - metabolism ; Gap Junctions - genetics ; Gap Junctions - metabolism ; Genes, Dominant ; Genetic Vectors ; Humans ; Lens, Crystalline - metabolism ; Mice ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation - genetics ; Oocytes ; Rats ; Sequence Alignment ; Transfection ; Xenopus laevis</subject><ispartof>Journal of cell science, 2009-02, Vol.122 (3), p.378-388</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-448b47a5f8b39d3e7c5d456d8a51b260164c095f8e45c5cb1ad0985cda938c573</citedby><cites>FETCH-LOGICAL-c435t-448b47a5f8b39d3e7c5d456d8a51b260164c095f8e45c5cb1ad0985cda938c573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3678,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19126675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Banks, Eric A</creatorcontrib><creatorcontrib>Toloue, Masoud M</creatorcontrib><creatorcontrib>Shi, Qian</creatorcontrib><creatorcontrib>Zhou, Zifei Jade</creatorcontrib><creatorcontrib>Liu, Jialu</creatorcontrib><creatorcontrib>Nicholson, Bruce J</creatorcontrib><creatorcontrib>Jiang, Jean X</creatorcontrib><title>Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner</title><title>Journal of cell science</title><addtitle>J Cell Sci</addtitle><description>The connexin (Cx) 50, E48K, mutation is associated with a human dominant congenital cataract; however, the underlying molecular mechanism has not been characterized. The glutamate (E) residue at position 48 is highly conserved across animal species and types of connexins. When expressed in paired Xenopus oocytes, human (h) and chicken (ch) Cx50 E48K mutants showed no electrical coupling. In addition, this mutation acts in a dominant negative manner when paired hetero-typically or hetero-merically with wild-type Cx50, but has no such effect on Cx46, the other lens fiber connexin. A similar loss-of-function and dominant negative effect was observed using dye transfer assays in the same system. By using two different dye transfer methods, with two different tracer dyes, we found chCx50 E48K expressed in chicken lens embryonic fibroblast cells by retroviral infection similarly failed to induce dye coupling, and prevented wild-type chCx50 from forming functional gap junctions. In contrast to its effect on gap junctions, the E48K mutation has no effect on hemichannel activity when assayed using electrical conductance in oocytes, and mechanically induced dye uptake in cells. Cx50 is functionally involved in cell differentiation and lens development, and the E48K mutant promotes primary lens cell differentiation indistinguishable from wild-type chCx50, despite its lack of junctional channel function. Together the data show that mutations affecting gap junctions but not hemichannel function of Cx50 can lead to dominant congenital cataracts in humans. This clearly supports the model of intercellular coupling of fiber cells creating a microcirculation of nutrients and metabolites required for lens transparency.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Cataract - genetics</subject><subject>Cataract - metabolism</subject><subject>Cattle</subject><subject>Chick Embryo</subject><subject>Connexins - genetics</subject><subject>Connexins - metabolism</subject><subject>Eye Proteins - genetics</subject><subject>Eye Proteins - metabolism</subject><subject>Gap Junctions - genetics</subject><subject>Gap Junctions - metabolism</subject><subject>Genes, Dominant</subject><subject>Genetic Vectors</subject><subject>Humans</subject><subject>Lens, Crystalline - metabolism</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation - genetics</subject><subject>Oocytes</subject><subject>Rats</subject><subject>Sequence Alignment</subject><subject>Transfection</subject><subject>Xenopus laevis</subject><issn>0021-9533</issn><issn>1477-9137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1P3DAUtCpQ2S5c-gNanxEBO7bj-IJUrYAiIXEAztaL40282tir2FmVX9C_jVdBpZzex8ybkd4g9J2SS1ry8mpj4iVhPPdf0IJyKQtFmTxCC0JKWijB2An6FuOGECJLJb-iE6poWVVSLNDfVfDe_nEeD1OC5ILHqYeEDUzRRtyGwXnweQ6-s94l2GYowQgmRex87xqXmw52eDN5c7iPF7iZEvYh4d4OzvSQDbZ5mz3gQ9DbLtvtLR4O-HiKjtewjfbsvS7Ry-3N8-p38fB4d7_69VAYzkQqOK8bLkGs64aplllpRMtF1dYgaFNWhFbcEJVhy4URpqHQElUL04JitRGSLdH1rLubmsG2xvo0wlbvRjfA-KoDOP0Z8a7XXdjrshKkZjwLnM8CZgwxjnb975YSfYhD5zj0HEcm__jf7YP6_v9M-DkT1hA0dKOL-uWpJJQRKmpBiWJvvMWThA</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Banks, Eric A</creator><creator>Toloue, Masoud M</creator><creator>Shi, Qian</creator><creator>Zhou, Zifei Jade</creator><creator>Liu, Jialu</creator><creator>Nicholson, Bruce J</creator><creator>Jiang, Jean X</creator><general>The Company of Biologists Limited</general><general>Company of Biologists</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20090201</creationdate><title>Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner</title><author>Banks, Eric A ; Toloue, Masoud M ; Shi, Qian ; Zhou, Zifei Jade ; Liu, Jialu ; Nicholson, Bruce J ; Jiang, Jean X</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-448b47a5f8b39d3e7c5d456d8a51b260164c095f8e45c5cb1ad0985cda938c573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Cataract - genetics</topic><topic>Cataract - metabolism</topic><topic>Cattle</topic><topic>Chick Embryo</topic><topic>Connexins - genetics</topic><topic>Connexins - metabolism</topic><topic>Eye Proteins - genetics</topic><topic>Eye Proteins - metabolism</topic><topic>Gap Junctions - genetics</topic><topic>Gap Junctions - metabolism</topic><topic>Genes, Dominant</topic><topic>Genetic Vectors</topic><topic>Humans</topic><topic>Lens, Crystalline - metabolism</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation - genetics</topic><topic>Oocytes</topic><topic>Rats</topic><topic>Sequence Alignment</topic><topic>Transfection</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banks, Eric A</creatorcontrib><creatorcontrib>Toloue, Masoud M</creatorcontrib><creatorcontrib>Shi, Qian</creatorcontrib><creatorcontrib>Zhou, Zifei Jade</creatorcontrib><creatorcontrib>Liu, Jialu</creatorcontrib><creatorcontrib>Nicholson, Bruce J</creatorcontrib><creatorcontrib>Jiang, Jean X</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cell science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banks, Eric A</au><au>Toloue, Masoud M</au><au>Shi, Qian</au><au>Zhou, Zifei Jade</au><au>Liu, Jialu</au><au>Nicholson, Bruce J</au><au>Jiang, Jean X</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner</atitle><jtitle>Journal of cell science</jtitle><addtitle>J Cell Sci</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>122</volume><issue>3</issue><spage>378</spage><epage>388</epage><pages>378-388</pages><issn>0021-9533</issn><eissn>1477-9137</eissn><abstract>The connexin (Cx) 50, E48K, mutation is associated with a human dominant congenital cataract; however, the underlying molecular mechanism has not been characterized. The glutamate (E) residue at position 48 is highly conserved across animal species and types of connexins. When expressed in paired Xenopus oocytes, human (h) and chicken (ch) Cx50 E48K mutants showed no electrical coupling. In addition, this mutation acts in a dominant negative manner when paired hetero-typically or hetero-merically with wild-type Cx50, but has no such effect on Cx46, the other lens fiber connexin. A similar loss-of-function and dominant negative effect was observed using dye transfer assays in the same system. By using two different dye transfer methods, with two different tracer dyes, we found chCx50 E48K expressed in chicken lens embryonic fibroblast cells by retroviral infection similarly failed to induce dye coupling, and prevented wild-type chCx50 from forming functional gap junctions. In contrast to its effect on gap junctions, the E48K mutation has no effect on hemichannel activity when assayed using electrical conductance in oocytes, and mechanically induced dye uptake in cells. Cx50 is functionally involved in cell differentiation and lens development, and the E48K mutant promotes primary lens cell differentiation indistinguishable from wild-type chCx50, despite its lack of junctional channel function. Together the data show that mutations affecting gap junctions but not hemichannel function of Cx50 can lead to dominant congenital cataracts in humans. This clearly supports the model of intercellular coupling of fiber cells creating a microcirculation of nutrients and metabolites required for lens transparency.</abstract><cop>England</cop><pub>The Company of Biologists Limited</pub><pmid>19126675</pmid><doi>10.1242/jcs.034124</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9533
ispartof Journal of cell science, 2009-02, Vol.122 (3), p.378-388
issn 0021-9533
1477-9137
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2650834
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Company of Biologists
subjects Amino Acid Sequence
Animals
Cataract - genetics
Cataract - metabolism
Cattle
Chick Embryo
Connexins - genetics
Connexins - metabolism
Eye Proteins - genetics
Eye Proteins - metabolism
Gap Junctions - genetics
Gap Junctions - metabolism
Genes, Dominant
Genetic Vectors
Humans
Lens, Crystalline - metabolism
Mice
Molecular Sequence Data
Mutagenesis, Site-Directed
Mutation - genetics
Oocytes
Rats
Sequence Alignment
Transfection
Xenopus laevis
title Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connexin%20mutation%20that%20causes%20dominant%20congenital%20cataracts%20inhibits%20gap%20junctions,%20but%20not%20hemichannels,%20in%20a%20dominant%20negative%20manner&rft.jtitle=Journal%20of%20cell%20science&rft.au=Banks,%20Eric%20A&rft.date=2009-02-01&rft.volume=122&rft.issue=3&rft.spage=378&rft.epage=388&rft.pages=378-388&rft.issn=0021-9533&rft.eissn=1477-9137&rft_id=info:doi/10.1242/jcs.034124&rft_dat=%3Cpubmed_cross%3E19126675%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19126675&rfr_iscdi=true