Rice Kinase-Protein Interaction Map
Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinas...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2009-03, Vol.149 (3), p.1478-1492 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1492 |
---|---|
container_issue | 3 |
container_start_page | 1478 |
container_title | Plant physiology (Bethesda) |
container_volume | 149 |
creator | Ding, Xiaodong Richter, Todd Chen, Mei Fujii, Hiroaki Seo, Young Su Xie, Mingtang Zheng, Xianwu Kanrar, Siddhartha Stevenson, Rebecca A Dardick, Christopher Li, Ying Jiang, Hao Zhang, Yan Yu, Fahong Bartley, Laura E Chern, Mawsheng Bart, Rebecca Chen, Xiuhua Zhu, Lihuang Farmerie, William G Gribskov, Michael Zhu, Jian-Kang Fromm, Michael E Ronald, Pamela C Song, Wen-Yuan |
description | Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed. |
doi_str_mv | 10.1104/pp.108.128298 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2649385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40537730</jstor_id><sourcerecordid>40537730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-ec02f7ce41b57bf0b9c7e1a97ca95fe90a1adc6d1a2724358aca97de5285e4e33</originalsourceid><addsrcrecordid>eNpVkc1rFEEQxRsxmE306FFdCOY2a1V_TfdFkKAmGFHUnJva3p7YYXZ67J4V_O_tMMtGT_Xg_XhVvGLsOcIKEeSbcVwhmBVyw615xBaoBG-4kuYxWwBUDcbYY3ZSyh0AoED5hB2jRbAS1YKdfYs-LD_FgUpovuY0hTgsr4YpZPJTTMPyM41P2VFHfQnP9vOU3Xx4_-Pisrn-8vHq4t1145WWUxM88K71QeJatesO1ta3Acm2nqzqggVC2ni9QeItl0IZqka7CYobFWQQ4pS9nXPH3XobNj4MU6bejTluKf9xiaL73xniT3ebfjuupRVG1YDzfUBOv3ahTG4biw99T0NIu-K0tkYrCRVsZtDnVEoO3WEJgruv1Y1jlcbNtVb-5b-XPdD7Hivweg9Q8dR3mQYfy4HjyBUXXFfuxczdlSnlgy9BibYV94e9mv2OkqPbXDNuvvP6NkANXEot_gKpZ5K1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66986540</pqid></control><display><type>article</type><title>Rice Kinase-Protein Interaction Map</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ding, Xiaodong ; Richter, Todd ; Chen, Mei ; Fujii, Hiroaki ; Seo, Young Su ; Xie, Mingtang ; Zheng, Xianwu ; Kanrar, Siddhartha ; Stevenson, Rebecca A ; Dardick, Christopher ; Li, Ying ; Jiang, Hao ; Zhang, Yan ; Yu, Fahong ; Bartley, Laura E ; Chern, Mawsheng ; Bart, Rebecca ; Chen, Xiuhua ; Zhu, Lihuang ; Farmerie, William G ; Gribskov, Michael ; Zhu, Jian-Kang ; Fromm, Michael E ; Ronald, Pamela C ; Song, Wen-Yuan</creator><creatorcontrib>Ding, Xiaodong ; Richter, Todd ; Chen, Mei ; Fujii, Hiroaki ; Seo, Young Su ; Xie, Mingtang ; Zheng, Xianwu ; Kanrar, Siddhartha ; Stevenson, Rebecca A ; Dardick, Christopher ; Li, Ying ; Jiang, Hao ; Zhang, Yan ; Yu, Fahong ; Bartley, Laura E ; Chern, Mawsheng ; Bart, Rebecca ; Chen, Xiuhua ; Zhu, Lihuang ; Farmerie, William G ; Gribskov, Michael ; Zhu, Jian-Kang ; Fromm, Michael E ; Ronald, Pamela C ; Song, Wen-Yuan</creatorcontrib><description>Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.108.128298</identifier><identifier>PMID: 19109415</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Amino Acid Sequence ; Biological and medical sciences ; Casein Kinase II - metabolism ; Cyclin-Dependent Kinases - metabolism ; DNA ; Fundamental and applied biological sciences. Psychology ; Gene expression regulation ; Mitogen-Activated Protein Kinases - metabolism ; Models, Biological ; Molecular Sequence Data ; Oryza - enzymology ; Phylogeny ; Plant cells ; Plant interaction ; Plant physiology and development ; Plant Proteins - chemistry ; Plant Proteins - metabolism ; Plants ; Protein Binding ; Protein Interaction Mapping - methods ; Protein Kinases - chemistry ; Protein Kinases - metabolism ; Proteins ; Receptors ; Rice ; Systems Biology, Molecular Biology, and Gene Regulation ; Transcription Factors ; Two-Hybrid System Techniques ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitins ; Yeasts</subject><ispartof>Plant physiology (Bethesda), 2009-03, Vol.149 (3), p.1478-1492</ispartof><rights>Copyright 2009 American Society of Plant Biologists</rights><rights>2009 INIST-CNRS</rights><rights>Copyright © 2009, American Society of Plant Biologists</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-ec02f7ce41b57bf0b9c7e1a97ca95fe90a1adc6d1a2724358aca97de5285e4e33</citedby><cites>FETCH-LOGICAL-c564t-ec02f7ce41b57bf0b9c7e1a97ca95fe90a1adc6d1a2724358aca97de5285e4e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40537730$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40537730$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21252326$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19109415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Xiaodong</creatorcontrib><creatorcontrib>Richter, Todd</creatorcontrib><creatorcontrib>Chen, Mei</creatorcontrib><creatorcontrib>Fujii, Hiroaki</creatorcontrib><creatorcontrib>Seo, Young Su</creatorcontrib><creatorcontrib>Xie, Mingtang</creatorcontrib><creatorcontrib>Zheng, Xianwu</creatorcontrib><creatorcontrib>Kanrar, Siddhartha</creatorcontrib><creatorcontrib>Stevenson, Rebecca A</creatorcontrib><creatorcontrib>Dardick, Christopher</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Yu, Fahong</creatorcontrib><creatorcontrib>Bartley, Laura E</creatorcontrib><creatorcontrib>Chern, Mawsheng</creatorcontrib><creatorcontrib>Bart, Rebecca</creatorcontrib><creatorcontrib>Chen, Xiuhua</creatorcontrib><creatorcontrib>Zhu, Lihuang</creatorcontrib><creatorcontrib>Farmerie, William G</creatorcontrib><creatorcontrib>Gribskov, Michael</creatorcontrib><creatorcontrib>Zhu, Jian-Kang</creatorcontrib><creatorcontrib>Fromm, Michael E</creatorcontrib><creatorcontrib>Ronald, Pamela C</creatorcontrib><creatorcontrib>Song, Wen-Yuan</creatorcontrib><title>Rice Kinase-Protein Interaction Map</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed.</description><subject>Amino Acid Sequence</subject><subject>Biological and medical sciences</subject><subject>Casein Kinase II - metabolism</subject><subject>Cyclin-Dependent Kinases - metabolism</subject><subject>DNA</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression regulation</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Oryza - enzymology</subject><subject>Phylogeny</subject><subject>Plant cells</subject><subject>Plant interaction</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Protein Binding</subject><subject>Protein Interaction Mapping - methods</subject><subject>Protein Kinases - chemistry</subject><subject>Protein Kinases - metabolism</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Rice</subject><subject>Systems Biology, Molecular Biology, and Gene Regulation</subject><subject>Transcription Factors</subject><subject>Two-Hybrid System Techniques</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitins</subject><subject>Yeasts</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1rFEEQxRsxmE306FFdCOY2a1V_TfdFkKAmGFHUnJva3p7YYXZ67J4V_O_tMMtGT_Xg_XhVvGLsOcIKEeSbcVwhmBVyw615xBaoBG-4kuYxWwBUDcbYY3ZSyh0AoED5hB2jRbAS1YKdfYs-LD_FgUpovuY0hTgsr4YpZPJTTMPyM41P2VFHfQnP9vOU3Xx4_-Pisrn-8vHq4t1145WWUxM88K71QeJatesO1ta3Acm2nqzqggVC2ni9QeItl0IZqka7CYobFWQQ4pS9nXPH3XobNj4MU6bejTluKf9xiaL73xniT3ebfjuupRVG1YDzfUBOv3ahTG4biw99T0NIu-K0tkYrCRVsZtDnVEoO3WEJgruv1Y1jlcbNtVb-5b-XPdD7Hivweg9Q8dR3mQYfy4HjyBUXXFfuxczdlSnlgy9BibYV94e9mv2OkqPbXDNuvvP6NkANXEot_gKpZ5K1</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Ding, Xiaodong</creator><creator>Richter, Todd</creator><creator>Chen, Mei</creator><creator>Fujii, Hiroaki</creator><creator>Seo, Young Su</creator><creator>Xie, Mingtang</creator><creator>Zheng, Xianwu</creator><creator>Kanrar, Siddhartha</creator><creator>Stevenson, Rebecca A</creator><creator>Dardick, Christopher</creator><creator>Li, Ying</creator><creator>Jiang, Hao</creator><creator>Zhang, Yan</creator><creator>Yu, Fahong</creator><creator>Bartley, Laura E</creator><creator>Chern, Mawsheng</creator><creator>Bart, Rebecca</creator><creator>Chen, Xiuhua</creator><creator>Zhu, Lihuang</creator><creator>Farmerie, William G</creator><creator>Gribskov, Michael</creator><creator>Zhu, Jian-Kang</creator><creator>Fromm, Michael E</creator><creator>Ronald, Pamela C</creator><creator>Song, Wen-Yuan</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090301</creationdate><title>Rice Kinase-Protein Interaction Map</title><author>Ding, Xiaodong ; Richter, Todd ; Chen, Mei ; Fujii, Hiroaki ; Seo, Young Su ; Xie, Mingtang ; Zheng, Xianwu ; Kanrar, Siddhartha ; Stevenson, Rebecca A ; Dardick, Christopher ; Li, Ying ; Jiang, Hao ; Zhang, Yan ; Yu, Fahong ; Bartley, Laura E ; Chern, Mawsheng ; Bart, Rebecca ; Chen, Xiuhua ; Zhu, Lihuang ; Farmerie, William G ; Gribskov, Michael ; Zhu, Jian-Kang ; Fromm, Michael E ; Ronald, Pamela C ; Song, Wen-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-ec02f7ce41b57bf0b9c7e1a97ca95fe90a1adc6d1a2724358aca97de5285e4e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Biological and medical sciences</topic><topic>Casein Kinase II - metabolism</topic><topic>Cyclin-Dependent Kinases - metabolism</topic><topic>DNA</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression regulation</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Oryza - enzymology</topic><topic>Phylogeny</topic><topic>Plant cells</topic><topic>Plant interaction</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Protein Binding</topic><topic>Protein Interaction Mapping - methods</topic><topic>Protein Kinases - chemistry</topic><topic>Protein Kinases - metabolism</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Rice</topic><topic>Systems Biology, Molecular Biology, and Gene Regulation</topic><topic>Transcription Factors</topic><topic>Two-Hybrid System Techniques</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitins</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Xiaodong</creatorcontrib><creatorcontrib>Richter, Todd</creatorcontrib><creatorcontrib>Chen, Mei</creatorcontrib><creatorcontrib>Fujii, Hiroaki</creatorcontrib><creatorcontrib>Seo, Young Su</creatorcontrib><creatorcontrib>Xie, Mingtang</creatorcontrib><creatorcontrib>Zheng, Xianwu</creatorcontrib><creatorcontrib>Kanrar, Siddhartha</creatorcontrib><creatorcontrib>Stevenson, Rebecca A</creatorcontrib><creatorcontrib>Dardick, Christopher</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Yu, Fahong</creatorcontrib><creatorcontrib>Bartley, Laura E</creatorcontrib><creatorcontrib>Chern, Mawsheng</creatorcontrib><creatorcontrib>Bart, Rebecca</creatorcontrib><creatorcontrib>Chen, Xiuhua</creatorcontrib><creatorcontrib>Zhu, Lihuang</creatorcontrib><creatorcontrib>Farmerie, William G</creatorcontrib><creatorcontrib>Gribskov, Michael</creatorcontrib><creatorcontrib>Zhu, Jian-Kang</creatorcontrib><creatorcontrib>Fromm, Michael E</creatorcontrib><creatorcontrib>Ronald, Pamela C</creatorcontrib><creatorcontrib>Song, Wen-Yuan</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Xiaodong</au><au>Richter, Todd</au><au>Chen, Mei</au><au>Fujii, Hiroaki</au><au>Seo, Young Su</au><au>Xie, Mingtang</au><au>Zheng, Xianwu</au><au>Kanrar, Siddhartha</au><au>Stevenson, Rebecca A</au><au>Dardick, Christopher</au><au>Li, Ying</au><au>Jiang, Hao</au><au>Zhang, Yan</au><au>Yu, Fahong</au><au>Bartley, Laura E</au><au>Chern, Mawsheng</au><au>Bart, Rebecca</au><au>Chen, Xiuhua</au><au>Zhu, Lihuang</au><au>Farmerie, William G</au><au>Gribskov, Michael</au><au>Zhu, Jian-Kang</au><au>Fromm, Michael E</au><au>Ronald, Pamela C</au><au>Song, Wen-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rice Kinase-Protein Interaction Map</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>149</volume><issue>3</issue><spage>1478</spage><epage>1492</epage><pages>1478-1492</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>19109415</pmid><doi>10.1104/pp.108.128298</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2009-03, Vol.149 (3), p.1478-1492 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2649385 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Amino Acid Sequence Biological and medical sciences Casein Kinase II - metabolism Cyclin-Dependent Kinases - metabolism DNA Fundamental and applied biological sciences. Psychology Gene expression regulation Mitogen-Activated Protein Kinases - metabolism Models, Biological Molecular Sequence Data Oryza - enzymology Phylogeny Plant cells Plant interaction Plant physiology and development Plant Proteins - chemistry Plant Proteins - metabolism Plants Protein Binding Protein Interaction Mapping - methods Protein Kinases - chemistry Protein Kinases - metabolism Proteins Receptors Rice Systems Biology, Molecular Biology, and Gene Regulation Transcription Factors Two-Hybrid System Techniques Ubiquitin-Protein Ligases - metabolism Ubiquitins Yeasts |
title | Rice Kinase-Protein Interaction Map |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rice%20Kinase-Protein%20Interaction%20Map&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Ding,%20Xiaodong&rft.date=2009-03-01&rft.volume=149&rft.issue=3&rft.spage=1478&rft.epage=1492&rft.pages=1478-1492&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.108.128298&rft_dat=%3Cjstor_pubme%3E40537730%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66986540&rft_id=info:pmid/19109415&rft_jstor_id=40537730&rfr_iscdi=true |