Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1

The formation of cysteine-sulfinic acid has recently become appreciated as a modification that links protein function to cellular oxidative status. Human DJ-1, a protein associated with inherited parkinsonism, readily forms cysteine-sulfinic acid at a conserved cysteine residue (Cys106 in human DJ-1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2009-03, Vol.284 (10), p.6476-6485
Hauptverfasser: Blackinton, Jeff, Lakshminarasimhan, Mahadevan, Thomas, Kelly J., Ahmad, Rili, Greggio, Elisa, Raza, Ashraf S., Cookson, Mark R., Wilson, Mark A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6485
container_issue 10
container_start_page 6476
container_title The Journal of biological chemistry
container_volume 284
creator Blackinton, Jeff
Lakshminarasimhan, Mahadevan
Thomas, Kelly J.
Ahmad, Rili
Greggio, Elisa
Raza, Ashraf S.
Cookson, Mark R.
Wilson, Mark A.
description The formation of cysteine-sulfinic acid has recently become appreciated as a modification that links protein function to cellular oxidative status. Human DJ-1, a protein associated with inherited parkinsonism, readily forms cysteine-sulfinic acid at a conserved cysteine residue (Cys106 in human DJ-1). Mutation of Cys106 causes the protein to lose its normal protective function in cell culture and model organisms. However, it is unknown whether the loss of DJ-1 protective function in these mutants is due to the absence of Cys106 oxidation or the absence of the cysteine residue itself. To address this question, we designed a series of substitutions at a proximal glutamic acid residue (Glu18) in human DJ-1 that alter the oxidative propensity of Cys106 through changes in hydrogen bonding. We show that two mutations, E18N and E18Q, allow Cys106 to be oxidized to Cys106-sulfinic acid under mild conditions. In contrast, the E18D mutation stabilizes a cysteine-sulfenic acid that is readily reduced to the thiol in solution and in vivo. We show that E18N and E18Q can both partially substitute for wild-type DJ-1 using mitochondrial fission and cell viability assays. In contrast, the oxidatively impaired E18D mutant behaves as an inactive C106A mutant and fails to protect cells. We therefore conclude that formation of Cys106-sulfinic acid is a key modification that regulates the protective function of DJ-1.
doi_str_mv 10.1074/jbc.M806599200
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2649108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820326752</els_id><sourcerecordid>21095821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c613t-50afac4baed70a50ebcf8421813d117e6fbff709ad262f8b74db680592c2f47d3</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxS0EotuFK0ewqMQti-18ORekamGhqBWVlkrcLMexN1MSu9jeoiL-eBxloXDAF0uen9_Mm4fQM0pWlNTF6-tWrS44qcqmYYQ8QAtKeJ7lJf3yEC0IYTRrWMmP0HEI1ySdoqGP0RFtKCuKii_Qz43zo4zgLHYGS7yNsoUBfugOr-9C1GA13u4HAxYUPlXQ4bOA1x4iKDlg4zyOvcYXEJ3qne08pNfN3qrfilP1UvqvYIOzEEZ86d2kit9-zOgT9MjIIeinh3uJrjbvPq8_ZOef3p-tT88zVdE8ZiWRRqqilbqriSyJbpXhBaOc5h2lta5Ma0xNGtmxihne1kXXVpyUDVPMFHWXL9GbWfdm3466U9pGLwdx42GU_k44CeLfioVe7NytYFXaV1roEr2cBVyIIIKCqFWvnLVaRUEJKYu6TtCrQxfvvu11iGKEoPQwSKvdPghGSVNyRhO4mkHlXQhemz-TUCKmVEVKVdynmj48_3v-e_wQYwJOZqCHXf8dvBYtpED0KBgvJtWqqKtEvZgpI52QOw9BXG0ZoTmhZcMrNlngM6FTGreg_eRVW6W7pJmsdg7-N-MvepbHUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21095821</pqid></control><display><type>article</type><title>Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Blackinton, Jeff ; Lakshminarasimhan, Mahadevan ; Thomas, Kelly J. ; Ahmad, Rili ; Greggio, Elisa ; Raza, Ashraf S. ; Cookson, Mark R. ; Wilson, Mark A.</creator><creatorcontrib>Blackinton, Jeff ; Lakshminarasimhan, Mahadevan ; Thomas, Kelly J. ; Ahmad, Rili ; Greggio, Elisa ; Raza, Ashraf S. ; Cookson, Mark R. ; Wilson, Mark A. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The formation of cysteine-sulfinic acid has recently become appreciated as a modification that links protein function to cellular oxidative status. Human DJ-1, a protein associated with inherited parkinsonism, readily forms cysteine-sulfinic acid at a conserved cysteine residue (Cys106 in human DJ-1). Mutation of Cys106 causes the protein to lose its normal protective function in cell culture and model organisms. However, it is unknown whether the loss of DJ-1 protective function in these mutants is due to the absence of Cys106 oxidation or the absence of the cysteine residue itself. To address this question, we designed a series of substitutions at a proximal glutamic acid residue (Glu18) in human DJ-1 that alter the oxidative propensity of Cys106 through changes in hydrogen bonding. We show that two mutations, E18N and E18Q, allow Cys106 to be oxidized to Cys106-sulfinic acid under mild conditions. In contrast, the E18D mutation stabilizes a cysteine-sulfenic acid that is readily reduced to the thiol in solution and in vivo. We show that E18N and E18Q can both partially substitute for wild-type DJ-1 using mitochondrial fission and cell viability assays. In contrast, the oxidatively impaired E18D mutant behaves as an inactive C106A mutant and fails to protect cells. We therefore conclude that formation of Cys106-sulfinic acid is a key modification that regulates the protective function of DJ-1.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M806599200</identifier><identifier>PMID: 19124468</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>08 HYDROGEN ; Amino Acid Substitution ; Animals ; BONDING ; CELL CULTURES ; Cell Line, Tumor ; CYSTEINE ; Cysteine - genetics ; Cysteine - metabolism ; FISSION ; Genetic Diseases, Inborn - genetics ; Genetic Diseases, Inborn - metabolism ; GLUTAMIC ACID ; Glutamic Acid - genetics ; Glutamic Acid - metabolism ; Humans ; HYDROGEN ; IN VIVO ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; Mice ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; MODIFICATIONS ; MUTANTS ; Mutation ; MUTATIONS ; Oncogene Proteins - genetics ; Oncogene Proteins - metabolism ; ORGANIC ACIDS ; ORGANIC SULFUR COMPOUNDS ; OXIDATION ; Oxidation-Reduction ; Parkinson Disease - genetics ; Parkinson Disease - metabolism ; Protein Deglycase DJ-1 ; Protein Structure and Folding ; PROTEINS ; RESIDUES ; Sulfinic Acids - metabolism ; THIOLS ; VIABILITY</subject><ispartof>The Journal of biological chemistry, 2009-03, Vol.284 (10), p.6476-6485</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Copyright © 2009, The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c613t-50afac4baed70a50ebcf8421813d117e6fbff709ad262f8b74db680592c2f47d3</citedby><cites>FETCH-LOGICAL-c613t-50afac4baed70a50ebcf8421813d117e6fbff709ad262f8b74db680592c2f47d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649108/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649108/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19124468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1005477$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Blackinton, Jeff</creatorcontrib><creatorcontrib>Lakshminarasimhan, Mahadevan</creatorcontrib><creatorcontrib>Thomas, Kelly J.</creatorcontrib><creatorcontrib>Ahmad, Rili</creatorcontrib><creatorcontrib>Greggio, Elisa</creatorcontrib><creatorcontrib>Raza, Ashraf S.</creatorcontrib><creatorcontrib>Cookson, Mark R.</creatorcontrib><creatorcontrib>Wilson, Mark A.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The formation of cysteine-sulfinic acid has recently become appreciated as a modification that links protein function to cellular oxidative status. Human DJ-1, a protein associated with inherited parkinsonism, readily forms cysteine-sulfinic acid at a conserved cysteine residue (Cys106 in human DJ-1). Mutation of Cys106 causes the protein to lose its normal protective function in cell culture and model organisms. However, it is unknown whether the loss of DJ-1 protective function in these mutants is due to the absence of Cys106 oxidation or the absence of the cysteine residue itself. To address this question, we designed a series of substitutions at a proximal glutamic acid residue (Glu18) in human DJ-1 that alter the oxidative propensity of Cys106 through changes in hydrogen bonding. We show that two mutations, E18N and E18Q, allow Cys106 to be oxidized to Cys106-sulfinic acid under mild conditions. In contrast, the E18D mutation stabilizes a cysteine-sulfenic acid that is readily reduced to the thiol in solution and in vivo. We show that E18N and E18Q can both partially substitute for wild-type DJ-1 using mitochondrial fission and cell viability assays. In contrast, the oxidatively impaired E18D mutant behaves as an inactive C106A mutant and fails to protect cells. We therefore conclude that formation of Cys106-sulfinic acid is a key modification that regulates the protective function of DJ-1.</description><subject>08 HYDROGEN</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>BONDING</subject><subject>CELL CULTURES</subject><subject>Cell Line, Tumor</subject><subject>CYSTEINE</subject><subject>Cysteine - genetics</subject><subject>Cysteine - metabolism</subject><subject>FISSION</subject><subject>Genetic Diseases, Inborn - genetics</subject><subject>Genetic Diseases, Inborn - metabolism</subject><subject>GLUTAMIC ACID</subject><subject>Glutamic Acid - genetics</subject><subject>Glutamic Acid - metabolism</subject><subject>Humans</subject><subject>HYDROGEN</subject><subject>IN VIVO</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Mice</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>MODIFICATIONS</subject><subject>MUTANTS</subject><subject>Mutation</subject><subject>MUTATIONS</subject><subject>Oncogene Proteins - genetics</subject><subject>Oncogene Proteins - metabolism</subject><subject>ORGANIC ACIDS</subject><subject>ORGANIC SULFUR COMPOUNDS</subject><subject>OXIDATION</subject><subject>Oxidation-Reduction</subject><subject>Parkinson Disease - genetics</subject><subject>Parkinson Disease - metabolism</subject><subject>Protein Deglycase DJ-1</subject><subject>Protein Structure and Folding</subject><subject>PROTEINS</subject><subject>RESIDUES</subject><subject>Sulfinic Acids - metabolism</subject><subject>THIOLS</subject><subject>VIABILITY</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1v1DAQxS0EotuFK0ewqMQti-18ORekamGhqBWVlkrcLMexN1MSu9jeoiL-eBxloXDAF0uen9_Mm4fQM0pWlNTF6-tWrS44qcqmYYQ8QAtKeJ7lJf3yEC0IYTRrWMmP0HEI1ySdoqGP0RFtKCuKii_Qz43zo4zgLHYGS7yNsoUBfugOr-9C1GA13u4HAxYUPlXQ4bOA1x4iKDlg4zyOvcYXEJ3qne08pNfN3qrfilP1UvqvYIOzEEZ86d2kit9-zOgT9MjIIeinh3uJrjbvPq8_ZOef3p-tT88zVdE8ZiWRRqqilbqriSyJbpXhBaOc5h2lta5Ma0xNGtmxihne1kXXVpyUDVPMFHWXL9GbWfdm3466U9pGLwdx42GU_k44CeLfioVe7NytYFXaV1roEr2cBVyIIIKCqFWvnLVaRUEJKYu6TtCrQxfvvu11iGKEoPQwSKvdPghGSVNyRhO4mkHlXQhemz-TUCKmVEVKVdynmj48_3v-e_wQYwJOZqCHXf8dvBYtpED0KBgvJtWqqKtEvZgpI52QOw9BXG0ZoTmhZcMrNlngM6FTGreg_eRVW6W7pJmsdg7-N-MvepbHUA</recordid><startdate>20090306</startdate><enddate>20090306</enddate><creator>Blackinton, Jeff</creator><creator>Lakshminarasimhan, Mahadevan</creator><creator>Thomas, Kelly J.</creator><creator>Ahmad, Rili</creator><creator>Greggio, Elisa</creator><creator>Raza, Ashraf S.</creator><creator>Cookson, Mark R.</creator><creator>Wilson, Mark A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20090306</creationdate><title>Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1</title><author>Blackinton, Jeff ; Lakshminarasimhan, Mahadevan ; Thomas, Kelly J. ; Ahmad, Rili ; Greggio, Elisa ; Raza, Ashraf S. ; Cookson, Mark R. ; Wilson, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c613t-50afac4baed70a50ebcf8421813d117e6fbff709ad262f8b74db680592c2f47d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>08 HYDROGEN</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>BONDING</topic><topic>CELL CULTURES</topic><topic>Cell Line, Tumor</topic><topic>CYSTEINE</topic><topic>Cysteine - genetics</topic><topic>Cysteine - metabolism</topic><topic>FISSION</topic><topic>Genetic Diseases, Inborn - genetics</topic><topic>Genetic Diseases, Inborn - metabolism</topic><topic>GLUTAMIC ACID</topic><topic>Glutamic Acid - genetics</topic><topic>Glutamic Acid - metabolism</topic><topic>Humans</topic><topic>HYDROGEN</topic><topic>IN VIVO</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Mice</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>MODIFICATIONS</topic><topic>MUTANTS</topic><topic>Mutation</topic><topic>MUTATIONS</topic><topic>Oncogene Proteins - genetics</topic><topic>Oncogene Proteins - metabolism</topic><topic>ORGANIC ACIDS</topic><topic>ORGANIC SULFUR COMPOUNDS</topic><topic>OXIDATION</topic><topic>Oxidation-Reduction</topic><topic>Parkinson Disease - genetics</topic><topic>Parkinson Disease - metabolism</topic><topic>Protein Deglycase DJ-1</topic><topic>Protein Structure and Folding</topic><topic>PROTEINS</topic><topic>RESIDUES</topic><topic>Sulfinic Acids - metabolism</topic><topic>THIOLS</topic><topic>VIABILITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blackinton, Jeff</creatorcontrib><creatorcontrib>Lakshminarasimhan, Mahadevan</creatorcontrib><creatorcontrib>Thomas, Kelly J.</creatorcontrib><creatorcontrib>Ahmad, Rili</creatorcontrib><creatorcontrib>Greggio, Elisa</creatorcontrib><creatorcontrib>Raza, Ashraf S.</creatorcontrib><creatorcontrib>Cookson, Mark R.</creatorcontrib><creatorcontrib>Wilson, Mark A.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blackinton, Jeff</au><au>Lakshminarasimhan, Mahadevan</au><au>Thomas, Kelly J.</au><au>Ahmad, Rili</au><au>Greggio, Elisa</au><au>Raza, Ashraf S.</au><au>Cookson, Mark R.</au><au>Wilson, Mark A.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-03-06</date><risdate>2009</risdate><volume>284</volume><issue>10</issue><spage>6476</spage><epage>6485</epage><pages>6476-6485</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The formation of cysteine-sulfinic acid has recently become appreciated as a modification that links protein function to cellular oxidative status. Human DJ-1, a protein associated with inherited parkinsonism, readily forms cysteine-sulfinic acid at a conserved cysteine residue (Cys106 in human DJ-1). Mutation of Cys106 causes the protein to lose its normal protective function in cell culture and model organisms. However, it is unknown whether the loss of DJ-1 protective function in these mutants is due to the absence of Cys106 oxidation or the absence of the cysteine residue itself. To address this question, we designed a series of substitutions at a proximal glutamic acid residue (Glu18) in human DJ-1 that alter the oxidative propensity of Cys106 through changes in hydrogen bonding. We show that two mutations, E18N and E18Q, allow Cys106 to be oxidized to Cys106-sulfinic acid under mild conditions. In contrast, the E18D mutation stabilizes a cysteine-sulfenic acid that is readily reduced to the thiol in solution and in vivo. We show that E18N and E18Q can both partially substitute for wild-type DJ-1 using mitochondrial fission and cell viability assays. In contrast, the oxidatively impaired E18D mutant behaves as an inactive C106A mutant and fails to protect cells. We therefore conclude that formation of Cys106-sulfinic acid is a key modification that regulates the protective function of DJ-1.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19124468</pmid><doi>10.1074/jbc.M806599200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2009-03, Vol.284 (10), p.6476-6485
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2649108
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 08 HYDROGEN
Amino Acid Substitution
Animals
BONDING
CELL CULTURES
Cell Line, Tumor
CYSTEINE
Cysteine - genetics
Cysteine - metabolism
FISSION
Genetic Diseases, Inborn - genetics
Genetic Diseases, Inborn - metabolism
GLUTAMIC ACID
Glutamic Acid - genetics
Glutamic Acid - metabolism
Humans
HYDROGEN
IN VIVO
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
Mice
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
MODIFICATIONS
MUTANTS
Mutation
MUTATIONS
Oncogene Proteins - genetics
Oncogene Proteins - metabolism
ORGANIC ACIDS
ORGANIC SULFUR COMPOUNDS
OXIDATION
Oxidation-Reduction
Parkinson Disease - genetics
Parkinson Disease - metabolism
Protein Deglycase DJ-1
Protein Structure and Folding
PROTEINS
RESIDUES
Sulfinic Acids - metabolism
THIOLS
VIABILITY
title Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20a%20Stabilized%20Cysteine%20Sulfinic%20Acid%20Is%20Critical%20for%20the%20Mitochondrial%20Function%20of%20the%20Parkinsonism%20Protein%20DJ-1&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Blackinton,%20Jeff&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2009-03-06&rft.volume=284&rft.issue=10&rft.spage=6476&rft.epage=6485&rft.pages=6476-6485&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M806599200&rft_dat=%3Cproquest_pubme%3E21095821%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21095821&rft_id=info:pmid/19124468&rft_els_id=S0021925820326752&rfr_iscdi=true