Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1
The formation of cysteine-sulfinic acid has recently become appreciated as a modification that links protein function to cellular oxidative status. Human DJ-1, a protein associated with inherited parkinsonism, readily forms cysteine-sulfinic acid at a conserved cysteine residue (Cys106 in human DJ-1...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2009-03, Vol.284 (10), p.6476-6485 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6485 |
---|---|
container_issue | 10 |
container_start_page | 6476 |
container_title | The Journal of biological chemistry |
container_volume | 284 |
creator | Blackinton, Jeff Lakshminarasimhan, Mahadevan Thomas, Kelly J. Ahmad, Rili Greggio, Elisa Raza, Ashraf S. Cookson, Mark R. Wilson, Mark A. |
description | The formation of cysteine-sulfinic acid has recently become appreciated as a modification that links protein function to cellular oxidative status. Human DJ-1, a protein associated with inherited parkinsonism, readily forms cysteine-sulfinic acid at a conserved cysteine residue (Cys106 in human DJ-1). Mutation of Cys106 causes the protein to lose its normal protective function in cell culture and model organisms. However, it is unknown whether the loss of DJ-1 protective function in these mutants is due to the absence of Cys106 oxidation or the absence of the cysteine residue itself. To address this question, we designed a series of substitutions at a proximal glutamic acid residue (Glu18) in human DJ-1 that alter the oxidative propensity of Cys106 through changes in hydrogen bonding. We show that two mutations, E18N and E18Q, allow Cys106 to be oxidized to Cys106-sulfinic acid under mild conditions. In contrast, the E18D mutation stabilizes a cysteine-sulfenic acid that is readily reduced to the thiol in solution and in vivo. We show that E18N and E18Q can both partially substitute for wild-type DJ-1 using mitochondrial fission and cell viability assays. In contrast, the oxidatively impaired E18D mutant behaves as an inactive C106A mutant and fails to protect cells. We therefore conclude that formation of Cys106-sulfinic acid is a key modification that regulates the protective function of DJ-1. |
doi_str_mv | 10.1074/jbc.M806599200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2649108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820326752</els_id><sourcerecordid>21095821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c613t-50afac4baed70a50ebcf8421813d117e6fbff709ad262f8b74db680592c2f47d3</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxS0EotuFK0ewqMQti-18ORekamGhqBWVlkrcLMexN1MSu9jeoiL-eBxloXDAF0uen9_Mm4fQM0pWlNTF6-tWrS44qcqmYYQ8QAtKeJ7lJf3yEC0IYTRrWMmP0HEI1ySdoqGP0RFtKCuKii_Qz43zo4zgLHYGS7yNsoUBfugOr-9C1GA13u4HAxYUPlXQ4bOA1x4iKDlg4zyOvcYXEJ3qne08pNfN3qrfilP1UvqvYIOzEEZ86d2kit9-zOgT9MjIIeinh3uJrjbvPq8_ZOef3p-tT88zVdE8ZiWRRqqilbqriSyJbpXhBaOc5h2lta5Ma0xNGtmxihne1kXXVpyUDVPMFHWXL9GbWfdm3466U9pGLwdx42GU_k44CeLfioVe7NytYFXaV1roEr2cBVyIIIKCqFWvnLVaRUEJKYu6TtCrQxfvvu11iGKEoPQwSKvdPghGSVNyRhO4mkHlXQhemz-TUCKmVEVKVdynmj48_3v-e_wQYwJOZqCHXf8dvBYtpED0KBgvJtWqqKtEvZgpI52QOw9BXG0ZoTmhZcMrNlngM6FTGreg_eRVW6W7pJmsdg7-N-MvepbHUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21095821</pqid></control><display><type>article</type><title>Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Blackinton, Jeff ; Lakshminarasimhan, Mahadevan ; Thomas, Kelly J. ; Ahmad, Rili ; Greggio, Elisa ; Raza, Ashraf S. ; Cookson, Mark R. ; Wilson, Mark A.</creator><creatorcontrib>Blackinton, Jeff ; Lakshminarasimhan, Mahadevan ; Thomas, Kelly J. ; Ahmad, Rili ; Greggio, Elisa ; Raza, Ashraf S. ; Cookson, Mark R. ; Wilson, Mark A. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The formation of cysteine-sulfinic acid has recently become appreciated as a modification that links protein function to cellular oxidative status. Human DJ-1, a protein associated with inherited parkinsonism, readily forms cysteine-sulfinic acid at a conserved cysteine residue (Cys106 in human DJ-1). Mutation of Cys106 causes the protein to lose its normal protective function in cell culture and model organisms. However, it is unknown whether the loss of DJ-1 protective function in these mutants is due to the absence of Cys106 oxidation or the absence of the cysteine residue itself. To address this question, we designed a series of substitutions at a proximal glutamic acid residue (Glu18) in human DJ-1 that alter the oxidative propensity of Cys106 through changes in hydrogen bonding. We show that two mutations, E18N and E18Q, allow Cys106 to be oxidized to Cys106-sulfinic acid under mild conditions. In contrast, the E18D mutation stabilizes a cysteine-sulfenic acid that is readily reduced to the thiol in solution and in vivo. We show that E18N and E18Q can both partially substitute for wild-type DJ-1 using mitochondrial fission and cell viability assays. In contrast, the oxidatively impaired E18D mutant behaves as an inactive C106A mutant and fails to protect cells. We therefore conclude that formation of Cys106-sulfinic acid is a key modification that regulates the protective function of DJ-1.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M806599200</identifier><identifier>PMID: 19124468</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>08 HYDROGEN ; Amino Acid Substitution ; Animals ; BONDING ; CELL CULTURES ; Cell Line, Tumor ; CYSTEINE ; Cysteine - genetics ; Cysteine - metabolism ; FISSION ; Genetic Diseases, Inborn - genetics ; Genetic Diseases, Inborn - metabolism ; GLUTAMIC ACID ; Glutamic Acid - genetics ; Glutamic Acid - metabolism ; Humans ; HYDROGEN ; IN VIVO ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; Mice ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; MODIFICATIONS ; MUTANTS ; Mutation ; MUTATIONS ; Oncogene Proteins - genetics ; Oncogene Proteins - metabolism ; ORGANIC ACIDS ; ORGANIC SULFUR COMPOUNDS ; OXIDATION ; Oxidation-Reduction ; Parkinson Disease - genetics ; Parkinson Disease - metabolism ; Protein Deglycase DJ-1 ; Protein Structure and Folding ; PROTEINS ; RESIDUES ; Sulfinic Acids - metabolism ; THIOLS ; VIABILITY</subject><ispartof>The Journal of biological chemistry, 2009-03, Vol.284 (10), p.6476-6485</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Copyright © 2009, The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c613t-50afac4baed70a50ebcf8421813d117e6fbff709ad262f8b74db680592c2f47d3</citedby><cites>FETCH-LOGICAL-c613t-50afac4baed70a50ebcf8421813d117e6fbff709ad262f8b74db680592c2f47d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649108/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649108/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19124468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1005477$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Blackinton, Jeff</creatorcontrib><creatorcontrib>Lakshminarasimhan, Mahadevan</creatorcontrib><creatorcontrib>Thomas, Kelly J.</creatorcontrib><creatorcontrib>Ahmad, Rili</creatorcontrib><creatorcontrib>Greggio, Elisa</creatorcontrib><creatorcontrib>Raza, Ashraf S.</creatorcontrib><creatorcontrib>Cookson, Mark R.</creatorcontrib><creatorcontrib>Wilson, Mark A.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The formation of cysteine-sulfinic acid has recently become appreciated as a modification that links protein function to cellular oxidative status. Human DJ-1, a protein associated with inherited parkinsonism, readily forms cysteine-sulfinic acid at a conserved cysteine residue (Cys106 in human DJ-1). Mutation of Cys106 causes the protein to lose its normal protective function in cell culture and model organisms. However, it is unknown whether the loss of DJ-1 protective function in these mutants is due to the absence of Cys106 oxidation or the absence of the cysteine residue itself. To address this question, we designed a series of substitutions at a proximal glutamic acid residue (Glu18) in human DJ-1 that alter the oxidative propensity of Cys106 through changes in hydrogen bonding. We show that two mutations, E18N and E18Q, allow Cys106 to be oxidized to Cys106-sulfinic acid under mild conditions. In contrast, the E18D mutation stabilizes a cysteine-sulfenic acid that is readily reduced to the thiol in solution and in vivo. We show that E18N and E18Q can both partially substitute for wild-type DJ-1 using mitochondrial fission and cell viability assays. In contrast, the oxidatively impaired E18D mutant behaves as an inactive C106A mutant and fails to protect cells. We therefore conclude that formation of Cys106-sulfinic acid is a key modification that regulates the protective function of DJ-1.</description><subject>08 HYDROGEN</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>BONDING</subject><subject>CELL CULTURES</subject><subject>Cell Line, Tumor</subject><subject>CYSTEINE</subject><subject>Cysteine - genetics</subject><subject>Cysteine - metabolism</subject><subject>FISSION</subject><subject>Genetic Diseases, Inborn - genetics</subject><subject>Genetic Diseases, Inborn - metabolism</subject><subject>GLUTAMIC ACID</subject><subject>Glutamic Acid - genetics</subject><subject>Glutamic Acid - metabolism</subject><subject>Humans</subject><subject>HYDROGEN</subject><subject>IN VIVO</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Mice</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>MODIFICATIONS</subject><subject>MUTANTS</subject><subject>Mutation</subject><subject>MUTATIONS</subject><subject>Oncogene Proteins - genetics</subject><subject>Oncogene Proteins - metabolism</subject><subject>ORGANIC ACIDS</subject><subject>ORGANIC SULFUR COMPOUNDS</subject><subject>OXIDATION</subject><subject>Oxidation-Reduction</subject><subject>Parkinson Disease - genetics</subject><subject>Parkinson Disease - metabolism</subject><subject>Protein Deglycase DJ-1</subject><subject>Protein Structure and Folding</subject><subject>PROTEINS</subject><subject>RESIDUES</subject><subject>Sulfinic Acids - metabolism</subject><subject>THIOLS</subject><subject>VIABILITY</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1v1DAQxS0EotuFK0ewqMQti-18ORekamGhqBWVlkrcLMexN1MSu9jeoiL-eBxloXDAF0uen9_Mm4fQM0pWlNTF6-tWrS44qcqmYYQ8QAtKeJ7lJf3yEC0IYTRrWMmP0HEI1ySdoqGP0RFtKCuKii_Qz43zo4zgLHYGS7yNsoUBfugOr-9C1GA13u4HAxYUPlXQ4bOA1x4iKDlg4zyOvcYXEJ3qne08pNfN3qrfilP1UvqvYIOzEEZ86d2kit9-zOgT9MjIIeinh3uJrjbvPq8_ZOef3p-tT88zVdE8ZiWRRqqilbqriSyJbpXhBaOc5h2lta5Ma0xNGtmxihne1kXXVpyUDVPMFHWXL9GbWfdm3466U9pGLwdx42GU_k44CeLfioVe7NytYFXaV1roEr2cBVyIIIKCqFWvnLVaRUEJKYu6TtCrQxfvvu11iGKEoPQwSKvdPghGSVNyRhO4mkHlXQhemz-TUCKmVEVKVdynmj48_3v-e_wQYwJOZqCHXf8dvBYtpED0KBgvJtWqqKtEvZgpI52QOw9BXG0ZoTmhZcMrNlngM6FTGreg_eRVW6W7pJmsdg7-N-MvepbHUA</recordid><startdate>20090306</startdate><enddate>20090306</enddate><creator>Blackinton, Jeff</creator><creator>Lakshminarasimhan, Mahadevan</creator><creator>Thomas, Kelly J.</creator><creator>Ahmad, Rili</creator><creator>Greggio, Elisa</creator><creator>Raza, Ashraf S.</creator><creator>Cookson, Mark R.</creator><creator>Wilson, Mark A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20090306</creationdate><title>Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1</title><author>Blackinton, Jeff ; Lakshminarasimhan, Mahadevan ; Thomas, Kelly J. ; Ahmad, Rili ; Greggio, Elisa ; Raza, Ashraf S. ; Cookson, Mark R. ; Wilson, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c613t-50afac4baed70a50ebcf8421813d117e6fbff709ad262f8b74db680592c2f47d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>08 HYDROGEN</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>BONDING</topic><topic>CELL CULTURES</topic><topic>Cell Line, Tumor</topic><topic>CYSTEINE</topic><topic>Cysteine - genetics</topic><topic>Cysteine - metabolism</topic><topic>FISSION</topic><topic>Genetic Diseases, Inborn - genetics</topic><topic>Genetic Diseases, Inborn - metabolism</topic><topic>GLUTAMIC ACID</topic><topic>Glutamic Acid - genetics</topic><topic>Glutamic Acid - metabolism</topic><topic>Humans</topic><topic>HYDROGEN</topic><topic>IN VIVO</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Mice</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>MODIFICATIONS</topic><topic>MUTANTS</topic><topic>Mutation</topic><topic>MUTATIONS</topic><topic>Oncogene Proteins - genetics</topic><topic>Oncogene Proteins - metabolism</topic><topic>ORGANIC ACIDS</topic><topic>ORGANIC SULFUR COMPOUNDS</topic><topic>OXIDATION</topic><topic>Oxidation-Reduction</topic><topic>Parkinson Disease - genetics</topic><topic>Parkinson Disease - metabolism</topic><topic>Protein Deglycase DJ-1</topic><topic>Protein Structure and Folding</topic><topic>PROTEINS</topic><topic>RESIDUES</topic><topic>Sulfinic Acids - metabolism</topic><topic>THIOLS</topic><topic>VIABILITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blackinton, Jeff</creatorcontrib><creatorcontrib>Lakshminarasimhan, Mahadevan</creatorcontrib><creatorcontrib>Thomas, Kelly J.</creatorcontrib><creatorcontrib>Ahmad, Rili</creatorcontrib><creatorcontrib>Greggio, Elisa</creatorcontrib><creatorcontrib>Raza, Ashraf S.</creatorcontrib><creatorcontrib>Cookson, Mark R.</creatorcontrib><creatorcontrib>Wilson, Mark A.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blackinton, Jeff</au><au>Lakshminarasimhan, Mahadevan</au><au>Thomas, Kelly J.</au><au>Ahmad, Rili</au><au>Greggio, Elisa</au><au>Raza, Ashraf S.</au><au>Cookson, Mark R.</au><au>Wilson, Mark A.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-03-06</date><risdate>2009</risdate><volume>284</volume><issue>10</issue><spage>6476</spage><epage>6485</epage><pages>6476-6485</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The formation of cysteine-sulfinic acid has recently become appreciated as a modification that links protein function to cellular oxidative status. Human DJ-1, a protein associated with inherited parkinsonism, readily forms cysteine-sulfinic acid at a conserved cysteine residue (Cys106 in human DJ-1). Mutation of Cys106 causes the protein to lose its normal protective function in cell culture and model organisms. However, it is unknown whether the loss of DJ-1 protective function in these mutants is due to the absence of Cys106 oxidation or the absence of the cysteine residue itself. To address this question, we designed a series of substitutions at a proximal glutamic acid residue (Glu18) in human DJ-1 that alter the oxidative propensity of Cys106 through changes in hydrogen bonding. We show that two mutations, E18N and E18Q, allow Cys106 to be oxidized to Cys106-sulfinic acid under mild conditions. In contrast, the E18D mutation stabilizes a cysteine-sulfenic acid that is readily reduced to the thiol in solution and in vivo. We show that E18N and E18Q can both partially substitute for wild-type DJ-1 using mitochondrial fission and cell viability assays. In contrast, the oxidatively impaired E18D mutant behaves as an inactive C106A mutant and fails to protect cells. We therefore conclude that formation of Cys106-sulfinic acid is a key modification that regulates the protective function of DJ-1.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19124468</pmid><doi>10.1074/jbc.M806599200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2009-03, Vol.284 (10), p.6476-6485 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2649108 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 08 HYDROGEN Amino Acid Substitution Animals BONDING CELL CULTURES Cell Line, Tumor CYSTEINE Cysteine - genetics Cysteine - metabolism FISSION Genetic Diseases, Inborn - genetics Genetic Diseases, Inborn - metabolism GLUTAMIC ACID Glutamic Acid - genetics Glutamic Acid - metabolism Humans HYDROGEN IN VIVO Intracellular Signaling Peptides and Proteins - genetics Intracellular Signaling Peptides and Proteins - metabolism Mice Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism MODIFICATIONS MUTANTS Mutation MUTATIONS Oncogene Proteins - genetics Oncogene Proteins - metabolism ORGANIC ACIDS ORGANIC SULFUR COMPOUNDS OXIDATION Oxidation-Reduction Parkinson Disease - genetics Parkinson Disease - metabolism Protein Deglycase DJ-1 Protein Structure and Folding PROTEINS RESIDUES Sulfinic Acids - metabolism THIOLS VIABILITY |
title | Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20a%20Stabilized%20Cysteine%20Sulfinic%20Acid%20Is%20Critical%20for%20the%20Mitochondrial%20Function%20of%20the%20Parkinsonism%20Protein%20DJ-1&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Blackinton,%20Jeff&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2009-03-06&rft.volume=284&rft.issue=10&rft.spage=6476&rft.epage=6485&rft.pages=6476-6485&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M806599200&rft_dat=%3Cproquest_pubme%3E21095821%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21095821&rft_id=info:pmid/19124468&rft_els_id=S0021925820326752&rfr_iscdi=true |