Diffusion-based spatial priors for imaging
We describe a Bayesian scheme to analyze images, which uses spatial priors encoded by a diffusion kernel, based on a weighted graph Laplacian. This provides a general framework to formulate a spatial model, whose parameters can be optimized. The application we have in mind is a spatiotemporal model...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2007-12, Vol.38 (4), p.677-695 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 695 |
---|---|
container_issue | 4 |
container_start_page | 677 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 38 |
creator | Harrison, L.M. Penny, W. Ashburner, J. Trujillo-Barreto, N. Friston, K.J. |
description | We describe a Bayesian scheme to analyze images, which uses spatial priors encoded by a diffusion kernel, based on a weighted graph Laplacian. This provides a general framework to formulate a spatial model, whose parameters can be optimized. The application we have in mind is a spatiotemporal model for imaging data. We illustrate the method on a random effects analysis of fMRI contrast images from multiple subjects; this simplifies exposition of the model and enables a clear description of its salient features. Typically, imaging data are smoothed using a fixed Gaussian kernel as a pre-processing step before applying a mass-univariate statistical model (e.g., a general linear model) to provide images of parameter estimates. An alternative is to include smoothness in a multivariate statistical model (Penny, W.D., Trujillo-Barreto, N.J., Friston, K.J., 2005. Bayesian fMRI time series analysis with spatial priors. Neuroimage 24, 350–362). The advantage of the latter is that each parameter field is smoothed automatically, according to a measure of uncertainty, given the data. In this work, we investigate the use of diffusion kernels to encode spatial correlations among parameter estimates. Nonlinear diffusion has a long history in image processing; in particular, flows that depend on local image geometry (Romeny, B.M.T., 1994. Geometry-driven Diffusion in Computer Vision. Kluwer Academic Publishers) can be used as adaptive filters. This can furnish a non-stationary smoothing process that preserves features, which would otherwise be lost with a fixed Gaussian kernel. We describe a Bayesian framework that incorporates non-stationary, adaptive smoothing into a generative model to extract spatial features in parameter estimates. Critically, this means adaptive smoothing becomes an integral part of estimation and inference. We illustrate the method using synthetic and real fMRI data. |
doi_str_mv | 10.1016/j.neuroimage.2007.07.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2643839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811907006453</els_id><sourcerecordid>3246193901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-6b96841aded24300dd431dba6fa0d2048c169047e6e4a23a65cbac37a9623ed83</originalsourceid><addsrcrecordid>eNqFUdtKxDAQDaJ4Wf0FKQg-CF1zb_MieFcQfNHnkCbTNUu3WZN2wb-3ZRdvL8JABnLmnDNzEMoInhJM5Pl82kIfg1-YGUwpxsV0LEa30D7BSuRKFHR77AXLS0LUHjpIaY4xVoSXu2iPFKVUgtN9dHbj67pPPrR5ZRK4LC1N502TLaMPMWV1iNko49vZIdqpTZPgaPNO0Ovd7cv1Q_70fP94ffmUW4FFl8tKyZIT48BRzjB2jjPiKiNrgx3FvLREKswLkMANZUYKWxnLCqMkZeBKNkEXa95lXy3AWWi7aBo9GFqY-KGD8fr3T-vf9CysNJWclUwNBKcbghjee0idXvhkoWlMC6FPerAnCR3UJujkD3Ae-tgOy2kicEG5ZEQMqHKNsjGkFKH-skKwHuPQc_0dhx7j0GOxUeD45yrfg5v7D4CrNQCGg648RJ2sh9aC8xFsp13w_6t8AsueoO4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507246315</pqid></control><display><type>article</type><title>Diffusion-based spatial priors for imaging</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Harrison, L.M. ; Penny, W. ; Ashburner, J. ; Trujillo-Barreto, N. ; Friston, K.J.</creator><creatorcontrib>Harrison, L.M. ; Penny, W. ; Ashburner, J. ; Trujillo-Barreto, N. ; Friston, K.J.</creatorcontrib><description>We describe a Bayesian scheme to analyze images, which uses spatial priors encoded by a diffusion kernel, based on a weighted graph Laplacian. This provides a general framework to formulate a spatial model, whose parameters can be optimized. The application we have in mind is a spatiotemporal model for imaging data. We illustrate the method on a random effects analysis of fMRI contrast images from multiple subjects; this simplifies exposition of the model and enables a clear description of its salient features. Typically, imaging data are smoothed using a fixed Gaussian kernel as a pre-processing step before applying a mass-univariate statistical model (e.g., a general linear model) to provide images of parameter estimates. An alternative is to include smoothness in a multivariate statistical model (Penny, W.D., Trujillo-Barreto, N.J., Friston, K.J., 2005. Bayesian fMRI time series analysis with spatial priors. Neuroimage 24, 350–362). The advantage of the latter is that each parameter field is smoothed automatically, according to a measure of uncertainty, given the data. In this work, we investigate the use of diffusion kernels to encode spatial correlations among parameter estimates. Nonlinear diffusion has a long history in image processing; in particular, flows that depend on local image geometry (Romeny, B.M.T., 1994. Geometry-driven Diffusion in Computer Vision. Kluwer Academic Publishers) can be used as adaptive filters. This can furnish a non-stationary smoothing process that preserves features, which would otherwise be lost with a fixed Gaussian kernel. We describe a Bayesian framework that incorporates non-stationary, adaptive smoothing into a generative model to extract spatial features in parameter estimates. Critically, this means adaptive smoothing becomes an integral part of estimation and inference. We illustrate the method using synthetic and real fMRI data.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2007.07.032</identifier><identifier>PMID: 17869542</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Analysis of Variance ; Bayes Theorem ; Brain - anatomy & histology ; Brain - physiology ; Diffusion ; Diffusion kernel ; Diffusion Magnetic Resonance Imaging - statistics & numerical data ; Economic models ; Euclidean space ; fMRI ; Gaussian process model ; General linear model ; Image Processing, Computer-Assisted - statistics & numerical data ; Least-Squares Analysis ; Linear Models ; Magnetic Resonance Imaging - statistics & numerical data ; Models, Neurological ; Normal Distribution ; Partial differential equations ; Population ; Random effects analysis ; Spatial priors ; Weighted graph Laplacian</subject><ispartof>NeuroImage (Orlando, Fla.), 2007-12, Vol.38 (4), p.677-695</ispartof><rights>2007 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Dec 1, 2007</rights><rights>2007 Elsevier Inc. 2007 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-6b96841aded24300dd431dba6fa0d2048c169047e6e4a23a65cbac37a9623ed83</citedby><cites>FETCH-LOGICAL-c505t-6b96841aded24300dd431dba6fa0d2048c169047e6e4a23a65cbac37a9623ed83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1507246315?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17869542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harrison, L.M.</creatorcontrib><creatorcontrib>Penny, W.</creatorcontrib><creatorcontrib>Ashburner, J.</creatorcontrib><creatorcontrib>Trujillo-Barreto, N.</creatorcontrib><creatorcontrib>Friston, K.J.</creatorcontrib><title>Diffusion-based spatial priors for imaging</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>We describe a Bayesian scheme to analyze images, which uses spatial priors encoded by a diffusion kernel, based on a weighted graph Laplacian. This provides a general framework to formulate a spatial model, whose parameters can be optimized. The application we have in mind is a spatiotemporal model for imaging data. We illustrate the method on a random effects analysis of fMRI contrast images from multiple subjects; this simplifies exposition of the model and enables a clear description of its salient features. Typically, imaging data are smoothed using a fixed Gaussian kernel as a pre-processing step before applying a mass-univariate statistical model (e.g., a general linear model) to provide images of parameter estimates. An alternative is to include smoothness in a multivariate statistical model (Penny, W.D., Trujillo-Barreto, N.J., Friston, K.J., 2005. Bayesian fMRI time series analysis with spatial priors. Neuroimage 24, 350–362). The advantage of the latter is that each parameter field is smoothed automatically, according to a measure of uncertainty, given the data. In this work, we investigate the use of diffusion kernels to encode spatial correlations among parameter estimates. Nonlinear diffusion has a long history in image processing; in particular, flows that depend on local image geometry (Romeny, B.M.T., 1994. Geometry-driven Diffusion in Computer Vision. Kluwer Academic Publishers) can be used as adaptive filters. This can furnish a non-stationary smoothing process that preserves features, which would otherwise be lost with a fixed Gaussian kernel. We describe a Bayesian framework that incorporates non-stationary, adaptive smoothing into a generative model to extract spatial features in parameter estimates. Critically, this means adaptive smoothing becomes an integral part of estimation and inference. We illustrate the method using synthetic and real fMRI data.</description><subject>Algorithms</subject><subject>Analysis of Variance</subject><subject>Bayes Theorem</subject><subject>Brain - anatomy & histology</subject><subject>Brain - physiology</subject><subject>Diffusion</subject><subject>Diffusion kernel</subject><subject>Diffusion Magnetic Resonance Imaging - statistics & numerical data</subject><subject>Economic models</subject><subject>Euclidean space</subject><subject>fMRI</subject><subject>Gaussian process model</subject><subject>General linear model</subject><subject>Image Processing, Computer-Assisted - statistics & numerical data</subject><subject>Least-Squares Analysis</subject><subject>Linear Models</subject><subject>Magnetic Resonance Imaging - statistics & numerical data</subject><subject>Models, Neurological</subject><subject>Normal Distribution</subject><subject>Partial differential equations</subject><subject>Population</subject><subject>Random effects analysis</subject><subject>Spatial priors</subject><subject>Weighted graph Laplacian</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFUdtKxDAQDaJ4Wf0FKQg-CF1zb_MieFcQfNHnkCbTNUu3WZN2wb-3ZRdvL8JABnLmnDNzEMoInhJM5Pl82kIfg1-YGUwpxsV0LEa30D7BSuRKFHR77AXLS0LUHjpIaY4xVoSXu2iPFKVUgtN9dHbj67pPPrR5ZRK4LC1N502TLaMPMWV1iNko49vZIdqpTZPgaPNO0Ovd7cv1Q_70fP94ffmUW4FFl8tKyZIT48BRzjB2jjPiKiNrgx3FvLREKswLkMANZUYKWxnLCqMkZeBKNkEXa95lXy3AWWi7aBo9GFqY-KGD8fr3T-vf9CysNJWclUwNBKcbghjee0idXvhkoWlMC6FPerAnCR3UJujkD3Ae-tgOy2kicEG5ZEQMqHKNsjGkFKH-skKwHuPQc_0dhx7j0GOxUeD45yrfg5v7D4CrNQCGg648RJ2sh9aC8xFsp13w_6t8AsueoO4</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Harrison, L.M.</creator><creator>Penny, W.</creator><creator>Ashburner, J.</creator><creator>Trujillo-Barreto, N.</creator><creator>Friston, K.J.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Academic Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200712</creationdate><title>Diffusion-based spatial priors for imaging</title><author>Harrison, L.M. ; Penny, W. ; Ashburner, J. ; Trujillo-Barreto, N. ; Friston, K.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-6b96841aded24300dd431dba6fa0d2048c169047e6e4a23a65cbac37a9623ed83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Analysis of Variance</topic><topic>Bayes Theorem</topic><topic>Brain - anatomy & histology</topic><topic>Brain - physiology</topic><topic>Diffusion</topic><topic>Diffusion kernel</topic><topic>Diffusion Magnetic Resonance Imaging - statistics & numerical data</topic><topic>Economic models</topic><topic>Euclidean space</topic><topic>fMRI</topic><topic>Gaussian process model</topic><topic>General linear model</topic><topic>Image Processing, Computer-Assisted - statistics & numerical data</topic><topic>Least-Squares Analysis</topic><topic>Linear Models</topic><topic>Magnetic Resonance Imaging - statistics & numerical data</topic><topic>Models, Neurological</topic><topic>Normal Distribution</topic><topic>Partial differential equations</topic><topic>Population</topic><topic>Random effects analysis</topic><topic>Spatial priors</topic><topic>Weighted graph Laplacian</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harrison, L.M.</creatorcontrib><creatorcontrib>Penny, W.</creatorcontrib><creatorcontrib>Ashburner, J.</creatorcontrib><creatorcontrib>Trujillo-Barreto, N.</creatorcontrib><creatorcontrib>Friston, K.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harrison, L.M.</au><au>Penny, W.</au><au>Ashburner, J.</au><au>Trujillo-Barreto, N.</au><au>Friston, K.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion-based spatial priors for imaging</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2007-12</date><risdate>2007</risdate><volume>38</volume><issue>4</issue><spage>677</spage><epage>695</epage><pages>677-695</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>We describe a Bayesian scheme to analyze images, which uses spatial priors encoded by a diffusion kernel, based on a weighted graph Laplacian. This provides a general framework to formulate a spatial model, whose parameters can be optimized. The application we have in mind is a spatiotemporal model for imaging data. We illustrate the method on a random effects analysis of fMRI contrast images from multiple subjects; this simplifies exposition of the model and enables a clear description of its salient features. Typically, imaging data are smoothed using a fixed Gaussian kernel as a pre-processing step before applying a mass-univariate statistical model (e.g., a general linear model) to provide images of parameter estimates. An alternative is to include smoothness in a multivariate statistical model (Penny, W.D., Trujillo-Barreto, N.J., Friston, K.J., 2005. Bayesian fMRI time series analysis with spatial priors. Neuroimage 24, 350–362). The advantage of the latter is that each parameter field is smoothed automatically, according to a measure of uncertainty, given the data. In this work, we investigate the use of diffusion kernels to encode spatial correlations among parameter estimates. Nonlinear diffusion has a long history in image processing; in particular, flows that depend on local image geometry (Romeny, B.M.T., 1994. Geometry-driven Diffusion in Computer Vision. Kluwer Academic Publishers) can be used as adaptive filters. This can furnish a non-stationary smoothing process that preserves features, which would otherwise be lost with a fixed Gaussian kernel. We describe a Bayesian framework that incorporates non-stationary, adaptive smoothing into a generative model to extract spatial features in parameter estimates. Critically, this means adaptive smoothing becomes an integral part of estimation and inference. We illustrate the method using synthetic and real fMRI data.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17869542</pmid><doi>10.1016/j.neuroimage.2007.07.032</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2007-12, Vol.38 (4), p.677-695 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2643839 |
source | MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland |
subjects | Algorithms Analysis of Variance Bayes Theorem Brain - anatomy & histology Brain - physiology Diffusion Diffusion kernel Diffusion Magnetic Resonance Imaging - statistics & numerical data Economic models Euclidean space fMRI Gaussian process model General linear model Image Processing, Computer-Assisted - statistics & numerical data Least-Squares Analysis Linear Models Magnetic Resonance Imaging - statistics & numerical data Models, Neurological Normal Distribution Partial differential equations Population Random effects analysis Spatial priors Weighted graph Laplacian |
title | Diffusion-based spatial priors for imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion-based%20spatial%20priors%20for%20imaging&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Harrison,%20L.M.&rft.date=2007-12&rft.volume=38&rft.issue=4&rft.spage=677&rft.epage=695&rft.pages=677-695&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2007.07.032&rft_dat=%3Cproquest_pubme%3E3246193901%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507246315&rft_id=info:pmid/17869542&rft_els_id=S1053811907006453&rfr_iscdi=true |