Cloning and Characterization of CYP51 from Mycobacterium avium
Mycobacterium avium complex (MAC) causes chronic lung disease in immunocompetent people and disseminated infection in patients with AIDS. MAC is intrinsically resistant to many conventional antimycobacterial agents, it develops drug resistance rapidly to macrolide antibiotics, and patients with MAC...
Gespeichert in:
Veröffentlicht in: | American journal of respiratory cell and molecular biology 2006-08, Vol.35 (2), p.236-242 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 242 |
---|---|
container_issue | 2 |
container_start_page | 236 |
container_title | American journal of respiratory cell and molecular biology |
container_volume | 35 |
creator | Pietila, Michael P Vohra, Pawan K Sanyal, Bharati Wengenack, Nancy L Raghavakaimal, Sreekumar Thomas, Charles F., Jr |
description | Mycobacterium avium complex (MAC) causes chronic lung disease in immunocompetent people and disseminated infection in patients with AIDS. MAC is intrinsically resistant to many conventional antimycobacterial agents, it develops drug resistance rapidly to macrolide antibiotics, and patients with MAC infection experience frequent relapses or the inability to completely eradicate the infection with current treatment. Treatment regimens are prolonged and complicated by drug toxicity or intolerances. We sought to identify biochemical pathways in MAC that can serve as targets for novel antimycobacterial treatment. The cytochrome P450 enzyme, CYP51, catalyzes an essential early step in sterol metabolism, removing a methyl group from lanosterol in animals and fungi, or from obtusifoliol in plants. Azoles inhibit CYP51 function, leading to an accumulation of methylated sterol precursors. This perturbation of normal sterol metabolism compromises cell membrane integrity, resulting in growth inhibition or cell death. We have cloned and characterized a CYP51 from MAC that functions as a lanosterol 14alpha-demethylase. We show the direct interactions of azoles with purified MAC-CYP51 by absorbance and electron paramagnetic resonance spectroscopy, and determine the minimum inhibitory concentrations (MICs) of econazole, ketoconazole, itraconazole, fluconazole, and voriconazole against MAC. Furthermore, we demonstrate that econazole has a MIC of 4 mug/ml and a minimum bacteriocidal concentration of 4 mug/ml, whereas ketoconazole has a MIC of 8 mug/ml and a minimum bacteriocidal concentration of 16 mug/ml. Itraconazole, voriconazole, and fluconazole did not inhibit MAC growth to any significant extent. |
doi_str_mv | 10.1165/rcmb.2005-0398OC |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2643258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1124567121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-f4ac93f7e17b5ac7c2d7e28b11f324392f9131c14f48043e460c8d0d5d89fd0d3</originalsourceid><addsrcrecordid>eNpVkElPwzAQhS0EgrLcOaGIE5cUj5fEuVRCEZtUVA5w4GQ5jt2mSmJw0qLy63GViuUyM9J8783oIXQOeAyQ8Guvm2JMMOYxppmY5XtoBJzymGUi2w8zZiwGzrIjdNx1S4yBCIBDdBS0jCaYj9Akr11btfNItWWUL5RXuje--lJ95drI2Sh_e-YQWe-a6GmjXTHsV02k1qGeogOr6s6c7foJer27fckf4uns_jG_mcaacdbHlimdUZsaSAuudKpJmRoiCgBLCaMZsRlQ0MAsE5hRwxKsRYlLXorMhk5P0GTwfV8VjSm1aXuvavnuq0b5jXSqkv83bbWQc7eWJGGUcBEMLncG3n2sTNfLpVv5NvwsCU55KgSlAcIDpL3rOm_szwHAchu43AYut4HLIfAgufj72K9gl3AArgZgUc0Xn5U3smtUXQccpFpu_SiXRBKa0G8zW4r1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207578833</pqid></control><display><type>article</type><title>Cloning and Characterization of CYP51 from Mycobacterium avium</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Pietila, Michael P ; Vohra, Pawan K ; Sanyal, Bharati ; Wengenack, Nancy L ; Raghavakaimal, Sreekumar ; Thomas, Charles F., Jr</creator><creatorcontrib>Pietila, Michael P ; Vohra, Pawan K ; Sanyal, Bharati ; Wengenack, Nancy L ; Raghavakaimal, Sreekumar ; Thomas, Charles F., Jr</creatorcontrib><description>Mycobacterium avium complex (MAC) causes chronic lung disease in immunocompetent people and disseminated infection in patients with AIDS. MAC is intrinsically resistant to many conventional antimycobacterial agents, it develops drug resistance rapidly to macrolide antibiotics, and patients with MAC infection experience frequent relapses or the inability to completely eradicate the infection with current treatment. Treatment regimens are prolonged and complicated by drug toxicity or intolerances. We sought to identify biochemical pathways in MAC that can serve as targets for novel antimycobacterial treatment. The cytochrome P450 enzyme, CYP51, catalyzes an essential early step in sterol metabolism, removing a methyl group from lanosterol in animals and fungi, or from obtusifoliol in plants. Azoles inhibit CYP51 function, leading to an accumulation of methylated sterol precursors. This perturbation of normal sterol metabolism compromises cell membrane integrity, resulting in growth inhibition or cell death. We have cloned and characterized a CYP51 from MAC that functions as a lanosterol 14alpha-demethylase. We show the direct interactions of azoles with purified MAC-CYP51 by absorbance and electron paramagnetic resonance spectroscopy, and determine the minimum inhibitory concentrations (MICs) of econazole, ketoconazole, itraconazole, fluconazole, and voriconazole against MAC. Furthermore, we demonstrate that econazole has a MIC of 4 mug/ml and a minimum bacteriocidal concentration of 4 mug/ml, whereas ketoconazole has a MIC of 8 mug/ml and a minimum bacteriocidal concentration of 16 mug/ml. Itraconazole, voriconazole, and fluconazole did not inhibit MAC growth to any significant extent.</description><identifier>ISSN: 1044-1549</identifier><identifier>EISSN: 1535-4989</identifier><identifier>DOI: 10.1165/rcmb.2005-0398OC</identifier><identifier>PMID: 16543605</identifier><identifier>CODEN: AJRBEL</identifier><language>eng</language><publisher>United States: Am Thoracic Soc</publisher><subject>Anti-Infective Agents - pharmacology ; Antifungal Agents - chemistry ; Antifungal Agents - pharmacology ; Azoles - chemistry ; Azoles - pharmacology ; Catalysis ; Cloning, Molecular ; Cytochrome P-450 Enzyme Inhibitors ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - isolation & purification ; Cytochrome P-450 Enzyme System - metabolism ; Dose-Response Relationship, Drug ; Drug Resistance, Microbial ; Electron Spin Resonance Spectroscopy ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - pharmacology ; Macrolides - pharmacology ; Mass Spectrometry ; Microbial Sensitivity Tests ; Mycobacterium avium - enzymology ; Oxidoreductases - antagonists & inhibitors ; Oxidoreductases - genetics ; Oxidoreductases - isolation & purification ; Oxidoreductases - metabolism ; Recombinant Proteins - metabolism ; Sterol 14-Demethylase</subject><ispartof>American journal of respiratory cell and molecular biology, 2006-08, Vol.35 (2), p.236-242</ispartof><rights>Copyright American Thoracic Society Aug 2006</rights><rights>Copyright © 2006, American Thoracic Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-f4ac93f7e17b5ac7c2d7e28b11f324392f9131c14f48043e460c8d0d5d89fd0d3</citedby><cites>FETCH-LOGICAL-c454t-f4ac93f7e17b5ac7c2d7e28b11f324392f9131c14f48043e460c8d0d5d89fd0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16543605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pietila, Michael P</creatorcontrib><creatorcontrib>Vohra, Pawan K</creatorcontrib><creatorcontrib>Sanyal, Bharati</creatorcontrib><creatorcontrib>Wengenack, Nancy L</creatorcontrib><creatorcontrib>Raghavakaimal, Sreekumar</creatorcontrib><creatorcontrib>Thomas, Charles F., Jr</creatorcontrib><title>Cloning and Characterization of CYP51 from Mycobacterium avium</title><title>American journal of respiratory cell and molecular biology</title><addtitle>Am J Respir Cell Mol Biol</addtitle><description>Mycobacterium avium complex (MAC) causes chronic lung disease in immunocompetent people and disseminated infection in patients with AIDS. MAC is intrinsically resistant to many conventional antimycobacterial agents, it develops drug resistance rapidly to macrolide antibiotics, and patients with MAC infection experience frequent relapses or the inability to completely eradicate the infection with current treatment. Treatment regimens are prolonged and complicated by drug toxicity or intolerances. We sought to identify biochemical pathways in MAC that can serve as targets for novel antimycobacterial treatment. The cytochrome P450 enzyme, CYP51, catalyzes an essential early step in sterol metabolism, removing a methyl group from lanosterol in animals and fungi, or from obtusifoliol in plants. Azoles inhibit CYP51 function, leading to an accumulation of methylated sterol precursors. This perturbation of normal sterol metabolism compromises cell membrane integrity, resulting in growth inhibition or cell death. We have cloned and characterized a CYP51 from MAC that functions as a lanosterol 14alpha-demethylase. We show the direct interactions of azoles with purified MAC-CYP51 by absorbance and electron paramagnetic resonance spectroscopy, and determine the minimum inhibitory concentrations (MICs) of econazole, ketoconazole, itraconazole, fluconazole, and voriconazole against MAC. Furthermore, we demonstrate that econazole has a MIC of 4 mug/ml and a minimum bacteriocidal concentration of 4 mug/ml, whereas ketoconazole has a MIC of 8 mug/ml and a minimum bacteriocidal concentration of 16 mug/ml. Itraconazole, voriconazole, and fluconazole did not inhibit MAC growth to any significant extent.</description><subject>Anti-Infective Agents - pharmacology</subject><subject>Antifungal Agents - chemistry</subject><subject>Antifungal Agents - pharmacology</subject><subject>Azoles - chemistry</subject><subject>Azoles - pharmacology</subject><subject>Catalysis</subject><subject>Cloning, Molecular</subject><subject>Cytochrome P-450 Enzyme Inhibitors</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - isolation & purification</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Resistance, Microbial</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Macrolides - pharmacology</subject><subject>Mass Spectrometry</subject><subject>Microbial Sensitivity Tests</subject><subject>Mycobacterium avium - enzymology</subject><subject>Oxidoreductases - antagonists & inhibitors</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - isolation & purification</subject><subject>Oxidoreductases - metabolism</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sterol 14-Demethylase</subject><issn>1044-1549</issn><issn>1535-4989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpVkElPwzAQhS0EgrLcOaGIE5cUj5fEuVRCEZtUVA5w4GQ5jt2mSmJw0qLy63GViuUyM9J8783oIXQOeAyQ8Guvm2JMMOYxppmY5XtoBJzymGUi2w8zZiwGzrIjdNx1S4yBCIBDdBS0jCaYj9Akr11btfNItWWUL5RXuje--lJ95drI2Sh_e-YQWe-a6GmjXTHsV02k1qGeogOr6s6c7foJer27fckf4uns_jG_mcaacdbHlimdUZsaSAuudKpJmRoiCgBLCaMZsRlQ0MAsE5hRwxKsRYlLXorMhk5P0GTwfV8VjSm1aXuvavnuq0b5jXSqkv83bbWQc7eWJGGUcBEMLncG3n2sTNfLpVv5NvwsCU55KgSlAcIDpL3rOm_szwHAchu43AYut4HLIfAgufj72K9gl3AArgZgUc0Xn5U3smtUXQccpFpu_SiXRBKa0G8zW4r1</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Pietila, Michael P</creator><creator>Vohra, Pawan K</creator><creator>Sanyal, Bharati</creator><creator>Wengenack, Nancy L</creator><creator>Raghavakaimal, Sreekumar</creator><creator>Thomas, Charles F., Jr</creator><general>Am Thoracic Soc</general><general>American Thoracic Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>5PM</scope></search><sort><creationdate>20060801</creationdate><title>Cloning and Characterization of CYP51 from Mycobacterium avium</title><author>Pietila, Michael P ; Vohra, Pawan K ; Sanyal, Bharati ; Wengenack, Nancy L ; Raghavakaimal, Sreekumar ; Thomas, Charles F., Jr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-f4ac93f7e17b5ac7c2d7e28b11f324392f9131c14f48043e460c8d0d5d89fd0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anti-Infective Agents - pharmacology</topic><topic>Antifungal Agents - chemistry</topic><topic>Antifungal Agents - pharmacology</topic><topic>Azoles - chemistry</topic><topic>Azoles - pharmacology</topic><topic>Catalysis</topic><topic>Cloning, Molecular</topic><topic>Cytochrome P-450 Enzyme Inhibitors</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - isolation & purification</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Resistance, Microbial</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Macrolides - pharmacology</topic><topic>Mass Spectrometry</topic><topic>Microbial Sensitivity Tests</topic><topic>Mycobacterium avium - enzymology</topic><topic>Oxidoreductases - antagonists & inhibitors</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - isolation & purification</topic><topic>Oxidoreductases - metabolism</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sterol 14-Demethylase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pietila, Michael P</creatorcontrib><creatorcontrib>Vohra, Pawan K</creatorcontrib><creatorcontrib>Sanyal, Bharati</creatorcontrib><creatorcontrib>Wengenack, Nancy L</creatorcontrib><creatorcontrib>Raghavakaimal, Sreekumar</creatorcontrib><creatorcontrib>Thomas, Charles F., Jr</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of respiratory cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pietila, Michael P</au><au>Vohra, Pawan K</au><au>Sanyal, Bharati</au><au>Wengenack, Nancy L</au><au>Raghavakaimal, Sreekumar</au><au>Thomas, Charles F., Jr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloning and Characterization of CYP51 from Mycobacterium avium</atitle><jtitle>American journal of respiratory cell and molecular biology</jtitle><addtitle>Am J Respir Cell Mol Biol</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>35</volume><issue>2</issue><spage>236</spage><epage>242</epage><pages>236-242</pages><issn>1044-1549</issn><eissn>1535-4989</eissn><coden>AJRBEL</coden><abstract>Mycobacterium avium complex (MAC) causes chronic lung disease in immunocompetent people and disseminated infection in patients with AIDS. MAC is intrinsically resistant to many conventional antimycobacterial agents, it develops drug resistance rapidly to macrolide antibiotics, and patients with MAC infection experience frequent relapses or the inability to completely eradicate the infection with current treatment. Treatment regimens are prolonged and complicated by drug toxicity or intolerances. We sought to identify biochemical pathways in MAC that can serve as targets for novel antimycobacterial treatment. The cytochrome P450 enzyme, CYP51, catalyzes an essential early step in sterol metabolism, removing a methyl group from lanosterol in animals and fungi, or from obtusifoliol in plants. Azoles inhibit CYP51 function, leading to an accumulation of methylated sterol precursors. This perturbation of normal sterol metabolism compromises cell membrane integrity, resulting in growth inhibition or cell death. We have cloned and characterized a CYP51 from MAC that functions as a lanosterol 14alpha-demethylase. We show the direct interactions of azoles with purified MAC-CYP51 by absorbance and electron paramagnetic resonance spectroscopy, and determine the minimum inhibitory concentrations (MICs) of econazole, ketoconazole, itraconazole, fluconazole, and voriconazole against MAC. Furthermore, we demonstrate that econazole has a MIC of 4 mug/ml and a minimum bacteriocidal concentration of 4 mug/ml, whereas ketoconazole has a MIC of 8 mug/ml and a minimum bacteriocidal concentration of 16 mug/ml. Itraconazole, voriconazole, and fluconazole did not inhibit MAC growth to any significant extent.</abstract><cop>United States</cop><pub>Am Thoracic Soc</pub><pmid>16543605</pmid><doi>10.1165/rcmb.2005-0398OC</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-1549 |
ispartof | American journal of respiratory cell and molecular biology, 2006-08, Vol.35 (2), p.236-242 |
issn | 1044-1549 1535-4989 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2643258 |
source | MEDLINE; Journals@Ovid Complete; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Anti-Infective Agents - pharmacology Antifungal Agents - chemistry Antifungal Agents - pharmacology Azoles - chemistry Azoles - pharmacology Catalysis Cloning, Molecular Cytochrome P-450 Enzyme Inhibitors Cytochrome P-450 Enzyme System - genetics Cytochrome P-450 Enzyme System - isolation & purification Cytochrome P-450 Enzyme System - metabolism Dose-Response Relationship, Drug Drug Resistance, Microbial Electron Spin Resonance Spectroscopy Enzyme Inhibitors - chemistry Enzyme Inhibitors - pharmacology Macrolides - pharmacology Mass Spectrometry Microbial Sensitivity Tests Mycobacterium avium - enzymology Oxidoreductases - antagonists & inhibitors Oxidoreductases - genetics Oxidoreductases - isolation & purification Oxidoreductases - metabolism Recombinant Proteins - metabolism Sterol 14-Demethylase |
title | Cloning and Characterization of CYP51 from Mycobacterium avium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloning%20and%20Characterization%20of%20CYP51%20from%20Mycobacterium%20avium&rft.jtitle=American%20journal%20of%20respiratory%20cell%20and%20molecular%20biology&rft.au=Pietila,%20Michael%20P&rft.date=2006-08-01&rft.volume=35&rft.issue=2&rft.spage=236&rft.epage=242&rft.pages=236-242&rft.issn=1044-1549&rft.eissn=1535-4989&rft.coden=AJRBEL&rft_id=info:doi/10.1165/rcmb.2005-0398OC&rft_dat=%3Cproquest_pubme%3E1124567121%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207578833&rft_id=info:pmid/16543605&rfr_iscdi=true |