Glycosynthases Enable a Highly Efficient Chemoenzymatic Synthesis of N-Glycoproteins Carrying Intact Natural N-Glycans
Homogeneous N-glycoproteins carrying defined natural N-glycans are essential for detailed structural and functional studies. The transglycosylation activity of the endo-β-N-acetylglucosaminidases from Arthrobacter protophormiae (Endo-A) and Mucor hiemalis (Endo-M) holds great potential for glycoprot...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2009-02, Vol.131 (6), p.2214-2223 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2223 |
---|---|
container_issue | 6 |
container_start_page | 2214 |
container_title | Journal of the American Chemical Society |
container_volume | 131 |
creator | Huang, Wei Li, Cishan Li, Bing Umekawa, Midori Yamamoto, Kenji Zhang, Xinyu Wang, Lai-Xi |
description | Homogeneous N-glycoproteins carrying defined natural N-glycans are essential for detailed structural and functional studies. The transglycosylation activity of the endo-β-N-acetylglucosaminidases from Arthrobacter protophormiae (Endo-A) and Mucor hiemalis (Endo-M) holds great potential for glycoprotein synthesis, but the wild-type enzymes are not practical for making glycoproteins carrying native N-glycans because of their predominant activity for product hydrolysis. In this article, we report studies of two endoglycosidase-based glycosynthases, EndoM-N175A and EndoA-N171A, and their usefulness in constructing homogeneous N-glycoproteins carrying natural N-glycans. The oligosaccharide oxazoline corresponding to the biantennary complex-type N-glycan was synthesized and tested with the two glycosynthases. The EndoM-N175A mutant was able to efficiently transfer the complex-type glycan oxazoline to a GlcNAc peptide and GlcNAc-containing ribonuclease to form the corresponding homogeneous glycopeptide/glycoprotein. The EndoA-N171A mutant did not recognize the complex-type N-glycan oxazoline but could efficiently use the high-mannose-type glycan oxazoline for transglycosylation. These mutants possess the transglycosylation activity but lack the hydrolytic activity toward the product. Kinetic studies revealed that the dramatically enhanced synthetic efficiency of the EndoA-N171A mutant was due to the significantly reduced hydrolytic activity toward both the Man9GlcNAc oxazoline and the product as well as to its enhanced activity for transglycosylation. Thus, the two mutants described here represent the first endoglycosidase-based glycosynthases enabling a highly efficient synthesis of homogeneous natural N-glycoproteins. |
doi_str_mv | 10.1021/ja8074677 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2640449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66916321</sourcerecordid><originalsourceid>FETCH-LOGICAL-a469t-4b06d4f35482d260a4c13944cfd802cee3d35f0ffd9d1954fd9f9bc43765ecdb3</originalsourceid><addsrcrecordid>eNptkUFvFCEUx4nR2G314BcwXDTpYRQYhhkuJs1mbZs09aCeyRsGdtnMwApMk_HTS91N1cTTywu_9-PBH6E3lHyghNGPe-hIy0XbPkMr2jBSNZSJ52hFCGFV24n6DJ2ntC8tZx19ic6opFIKIlfo4XpcdEiLzztIJuGNh340GPCN2-7GBW-sddoZn_F6Z6Zg_M9lguw0_vo4YpJLOFh8X_3WHGLIxvmE1xDj4vwW3_oMOuN7yHOE8cSBT6_QCwtjMq9P9QJ9_7z5tr6p7r5c366v7irgQuaK90QM3NYN79jABAGuaS0513boCNPG1EPdWGLtIAcqG16qlb3mdSsao4e-vkCfjt7D3E9m0OUhZQ91iG6CuKgATv174t1ObcODYoITzmURvD8JYvgxm5TV5JI24wjehDkpISQVNaMFvDyCOoaUorFPl1CiHlNSTykV9u3fW_0hT7EU4N0RAJ3UPszRl0_6j-gX0oucGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66916321</pqid></control><display><type>article</type><title>Glycosynthases Enable a Highly Efficient Chemoenzymatic Synthesis of N-Glycoproteins Carrying Intact Natural N-Glycans</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Huang, Wei ; Li, Cishan ; Li, Bing ; Umekawa, Midori ; Yamamoto, Kenji ; Zhang, Xinyu ; Wang, Lai-Xi</creator><creatorcontrib>Huang, Wei ; Li, Cishan ; Li, Bing ; Umekawa, Midori ; Yamamoto, Kenji ; Zhang, Xinyu ; Wang, Lai-Xi</creatorcontrib><description>Homogeneous N-glycoproteins carrying defined natural N-glycans are essential for detailed structural and functional studies. The transglycosylation activity of the endo-β-N-acetylglucosaminidases from Arthrobacter protophormiae (Endo-A) and Mucor hiemalis (Endo-M) holds great potential for glycoprotein synthesis, but the wild-type enzymes are not practical for making glycoproteins carrying native N-glycans because of their predominant activity for product hydrolysis. In this article, we report studies of two endoglycosidase-based glycosynthases, EndoM-N175A and EndoA-N171A, and their usefulness in constructing homogeneous N-glycoproteins carrying natural N-glycans. The oligosaccharide oxazoline corresponding to the biantennary complex-type N-glycan was synthesized and tested with the two glycosynthases. The EndoM-N175A mutant was able to efficiently transfer the complex-type glycan oxazoline to a GlcNAc peptide and GlcNAc-containing ribonuclease to form the corresponding homogeneous glycopeptide/glycoprotein. The EndoA-N171A mutant did not recognize the complex-type N-glycan oxazoline but could efficiently use the high-mannose-type glycan oxazoline for transglycosylation. These mutants possess the transglycosylation activity but lack the hydrolytic activity toward the product. Kinetic studies revealed that the dramatically enhanced synthetic efficiency of the EndoA-N171A mutant was due to the significantly reduced hydrolytic activity toward both the Man9GlcNAc oxazoline and the product as well as to its enhanced activity for transglycosylation. Thus, the two mutants described here represent the first endoglycosidase-based glycosynthases enabling a highly efficient synthesis of homogeneous natural N-glycoproteins.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja8074677</identifier><identifier>PMID: 19199609</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Arthrobacter - enzymology ; Carbohydrate Sequence ; Glycoproteins - chemical synthesis ; Glycoproteins - metabolism ; Glycoside Hydrolases - chemistry ; Glycoside Hydrolases - metabolism ; Glycosylation ; Models, Molecular ; Molecular Sequence Data ; Mucor - enzymology ; Oligosaccharides - chemical synthesis ; Oligosaccharides - metabolism ; Oxazoles - chemistry ; Oxazoles - metabolism ; Polysaccharides - chemical synthesis ; Polysaccharides - metabolism</subject><ispartof>Journal of the American Chemical Society, 2009-02, Vol.131 (6), p.2214-2223</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a469t-4b06d4f35482d260a4c13944cfd802cee3d35f0ffd9d1954fd9f9bc43765ecdb3</citedby><cites>FETCH-LOGICAL-a469t-4b06d4f35482d260a4c13944cfd802cee3d35f0ffd9d1954fd9f9bc43765ecdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja8074677$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja8074677$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19199609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Li, Cishan</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Umekawa, Midori</creatorcontrib><creatorcontrib>Yamamoto, Kenji</creatorcontrib><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Wang, Lai-Xi</creatorcontrib><title>Glycosynthases Enable a Highly Efficient Chemoenzymatic Synthesis of N-Glycoproteins Carrying Intact Natural N-Glycans</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Homogeneous N-glycoproteins carrying defined natural N-glycans are essential for detailed structural and functional studies. The transglycosylation activity of the endo-β-N-acetylglucosaminidases from Arthrobacter protophormiae (Endo-A) and Mucor hiemalis (Endo-M) holds great potential for glycoprotein synthesis, but the wild-type enzymes are not practical for making glycoproteins carrying native N-glycans because of their predominant activity for product hydrolysis. In this article, we report studies of two endoglycosidase-based glycosynthases, EndoM-N175A and EndoA-N171A, and their usefulness in constructing homogeneous N-glycoproteins carrying natural N-glycans. The oligosaccharide oxazoline corresponding to the biantennary complex-type N-glycan was synthesized and tested with the two glycosynthases. The EndoM-N175A mutant was able to efficiently transfer the complex-type glycan oxazoline to a GlcNAc peptide and GlcNAc-containing ribonuclease to form the corresponding homogeneous glycopeptide/glycoprotein. The EndoA-N171A mutant did not recognize the complex-type N-glycan oxazoline but could efficiently use the high-mannose-type glycan oxazoline for transglycosylation. These mutants possess the transglycosylation activity but lack the hydrolytic activity toward the product. Kinetic studies revealed that the dramatically enhanced synthetic efficiency of the EndoA-N171A mutant was due to the significantly reduced hydrolytic activity toward both the Man9GlcNAc oxazoline and the product as well as to its enhanced activity for transglycosylation. Thus, the two mutants described here represent the first endoglycosidase-based glycosynthases enabling a highly efficient synthesis of homogeneous natural N-glycoproteins.</description><subject>Arthrobacter - enzymology</subject><subject>Carbohydrate Sequence</subject><subject>Glycoproteins - chemical synthesis</subject><subject>Glycoproteins - metabolism</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Glycosylation</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mucor - enzymology</subject><subject>Oligosaccharides - chemical synthesis</subject><subject>Oligosaccharides - metabolism</subject><subject>Oxazoles - chemistry</subject><subject>Oxazoles - metabolism</subject><subject>Polysaccharides - chemical synthesis</subject><subject>Polysaccharides - metabolism</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkUFvFCEUx4nR2G314BcwXDTpYRQYhhkuJs1mbZs09aCeyRsGdtnMwApMk_HTS91N1cTTywu_9-PBH6E3lHyghNGPe-hIy0XbPkMr2jBSNZSJ52hFCGFV24n6DJ2ntC8tZx19ic6opFIKIlfo4XpcdEiLzztIJuGNh340GPCN2-7GBW-sddoZn_F6Z6Zg_M9lguw0_vo4YpJLOFh8X_3WHGLIxvmE1xDj4vwW3_oMOuN7yHOE8cSBT6_QCwtjMq9P9QJ9_7z5tr6p7r5c366v7irgQuaK90QM3NYN79jABAGuaS0513boCNPG1EPdWGLtIAcqG16qlb3mdSsao4e-vkCfjt7D3E9m0OUhZQ91iG6CuKgATv174t1ObcODYoITzmURvD8JYvgxm5TV5JI24wjehDkpISQVNaMFvDyCOoaUorFPl1CiHlNSTykV9u3fW_0hT7EU4N0RAJ3UPszRl0_6j-gX0oucGg</recordid><startdate>20090218</startdate><enddate>20090218</enddate><creator>Huang, Wei</creator><creator>Li, Cishan</creator><creator>Li, Bing</creator><creator>Umekawa, Midori</creator><creator>Yamamoto, Kenji</creator><creator>Zhang, Xinyu</creator><creator>Wang, Lai-Xi</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090218</creationdate><title>Glycosynthases Enable a Highly Efficient Chemoenzymatic Synthesis of N-Glycoproteins Carrying Intact Natural N-Glycans</title><author>Huang, Wei ; Li, Cishan ; Li, Bing ; Umekawa, Midori ; Yamamoto, Kenji ; Zhang, Xinyu ; Wang, Lai-Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a469t-4b06d4f35482d260a4c13944cfd802cee3d35f0ffd9d1954fd9f9bc43765ecdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Arthrobacter - enzymology</topic><topic>Carbohydrate Sequence</topic><topic>Glycoproteins - chemical synthesis</topic><topic>Glycoproteins - metabolism</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Glycosylation</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mucor - enzymology</topic><topic>Oligosaccharides - chemical synthesis</topic><topic>Oligosaccharides - metabolism</topic><topic>Oxazoles - chemistry</topic><topic>Oxazoles - metabolism</topic><topic>Polysaccharides - chemical synthesis</topic><topic>Polysaccharides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Li, Cishan</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Umekawa, Midori</creatorcontrib><creatorcontrib>Yamamoto, Kenji</creatorcontrib><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Wang, Lai-Xi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Wei</au><au>Li, Cishan</au><au>Li, Bing</au><au>Umekawa, Midori</au><au>Yamamoto, Kenji</au><au>Zhang, Xinyu</au><au>Wang, Lai-Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycosynthases Enable a Highly Efficient Chemoenzymatic Synthesis of N-Glycoproteins Carrying Intact Natural N-Glycans</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2009-02-18</date><risdate>2009</risdate><volume>131</volume><issue>6</issue><spage>2214</spage><epage>2223</epage><pages>2214-2223</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Homogeneous N-glycoproteins carrying defined natural N-glycans are essential for detailed structural and functional studies. The transglycosylation activity of the endo-β-N-acetylglucosaminidases from Arthrobacter protophormiae (Endo-A) and Mucor hiemalis (Endo-M) holds great potential for glycoprotein synthesis, but the wild-type enzymes are not practical for making glycoproteins carrying native N-glycans because of their predominant activity for product hydrolysis. In this article, we report studies of two endoglycosidase-based glycosynthases, EndoM-N175A and EndoA-N171A, and their usefulness in constructing homogeneous N-glycoproteins carrying natural N-glycans. The oligosaccharide oxazoline corresponding to the biantennary complex-type N-glycan was synthesized and tested with the two glycosynthases. The EndoM-N175A mutant was able to efficiently transfer the complex-type glycan oxazoline to a GlcNAc peptide and GlcNAc-containing ribonuclease to form the corresponding homogeneous glycopeptide/glycoprotein. The EndoA-N171A mutant did not recognize the complex-type N-glycan oxazoline but could efficiently use the high-mannose-type glycan oxazoline for transglycosylation. These mutants possess the transglycosylation activity but lack the hydrolytic activity toward the product. Kinetic studies revealed that the dramatically enhanced synthetic efficiency of the EndoA-N171A mutant was due to the significantly reduced hydrolytic activity toward both the Man9GlcNAc oxazoline and the product as well as to its enhanced activity for transglycosylation. Thus, the two mutants described here represent the first endoglycosidase-based glycosynthases enabling a highly efficient synthesis of homogeneous natural N-glycoproteins.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19199609</pmid><doi>10.1021/ja8074677</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2009-02, Vol.131 (6), p.2214-2223 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2640449 |
source | MEDLINE; American Chemical Society Journals |
subjects | Arthrobacter - enzymology Carbohydrate Sequence Glycoproteins - chemical synthesis Glycoproteins - metabolism Glycoside Hydrolases - chemistry Glycoside Hydrolases - metabolism Glycosylation Models, Molecular Molecular Sequence Data Mucor - enzymology Oligosaccharides - chemical synthesis Oligosaccharides - metabolism Oxazoles - chemistry Oxazoles - metabolism Polysaccharides - chemical synthesis Polysaccharides - metabolism |
title | Glycosynthases Enable a Highly Efficient Chemoenzymatic Synthesis of N-Glycoproteins Carrying Intact Natural N-Glycans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycosynthases%20Enable%20a%20Highly%20Efficient%20Chemoenzymatic%20Synthesis%20of%20N-Glycoproteins%20Carrying%20Intact%20Natural%20N-Glycans&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Huang,%20Wei&rft.date=2009-02-18&rft.volume=131&rft.issue=6&rft.spage=2214&rft.epage=2223&rft.pages=2214-2223&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja8074677&rft_dat=%3Cproquest_pubme%3E66916321%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66916321&rft_id=info:pmid/19199609&rfr_iscdi=true |