Position-dependent motif characterization using non-negative matrix factorization
Motivation: Cis-acting regulatory elements are frequently constrained by both sequence content and positioning relative to a functional site, such as a splice or polyadenylation site. We describe an approach to regulatory motif analysis based on non-negative matrix factorization (NMF). Whereas exist...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2008-12, Vol.24 (23), p.2684-2690 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2690 |
---|---|
container_issue | 23 |
container_start_page | 2684 |
container_title | Bioinformatics |
container_volume | 24 |
creator | Hutchins, Lucie N. Murphy, Sean M. Singh, Priyam Graber, Joel H. |
description | Motivation: Cis-acting regulatory elements are frequently constrained by both sequence content and positioning relative to a functional site, such as a splice or polyadenylation site. We describe an approach to regulatory motif analysis based on non-negative matrix factorization (NMF). Whereas existing pattern recognition algorithms commonly focus primarily on sequence content, our method simultaneously characterizes both positioning and sequence content of putative motifs. Results: Tests on artificially generated sequences show that NMF can faithfully reproduce both positioning and content of test motifs. We show how the variation of the residual sum of squares can be used to give a robust estimate of the number of motifs or patterns in a sequence set. Our analysis distinguishes multiple motifs with significant overlap in sequence content and/or positioning. Finally, we demonstrate the use of the NMF approach through characterization of biologically interesting datasets. Specifically, an analysis of mRNA 3′-processing (cleavage and polyadenylation) sites from a broad range of higher eukaryotes reveals a conserved core pattern of three elements. Contact: joel.graber@jax.org Supplementary information: Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btn526 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2639279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btn526</oup_id><sourcerecordid>69816391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-45861e25a68f3795f8e4e8c0d17a780ed4f22737eda749604057b251c4fd5d553</originalsourceid><addsrcrecordid>eNqN0dtuFCEYAOCJ0diDPoJmYqJ3Y4HheGPSbNy2cZNW4ym9ISwDW-oMrMA01acvm1lX641eQeD7D_BX1TMIXkMg2qOlC87bEAeVnU5Hy-wJog-qfYgpaBAg4mHZt5Q1mIN2rzpI6RoAAjHGj6s9yDlBkNH96v1FSC674JvOrI3vjM_1ELKztb5SUelsovupNqAek_Or2hfqzaoc3Zi6FI_utrbFhV_uSfXIqj6Zp9v1sPo0f_txdtoszk_OZseLRlOMcoMJp9Agoii3LRPEcoMN16CDTDEOTIctQqxlplMMCwowIGyJCNTYdqQjpD2s3kx51-NyMJ0unUfVy3V0g4o_ZFBO3r_x7kquwo1EtBWIiZLg1TZBDN9Hk7IcXNKm75U3YUySCg4Lhf-EUBBABcMFvvgLXocx-vILxXDKNnULIhPSMaQUjd21DIHcjFbeH62cRlvinv_53t9R21kW8HILVNKqt1F57dLOIcAZES0vDkwujOv_rt1MIS5lc7sLUvGbLK9iRJ5-vZTvLr_MFp8_zOW8vQN9UtTW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198673927</pqid></control><display><type>article</type><title>Position-dependent motif characterization using non-negative matrix factorization</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hutchins, Lucie N. ; Murphy, Sean M. ; Singh, Priyam ; Graber, Joel H.</creator><creatorcontrib>Hutchins, Lucie N. ; Murphy, Sean M. ; Singh, Priyam ; Graber, Joel H.</creatorcontrib><description>Motivation: Cis-acting regulatory elements are frequently constrained by both sequence content and positioning relative to a functional site, such as a splice or polyadenylation site. We describe an approach to regulatory motif analysis based on non-negative matrix factorization (NMF). Whereas existing pattern recognition algorithms commonly focus primarily on sequence content, our method simultaneously characterizes both positioning and sequence content of putative motifs. Results: Tests on artificially generated sequences show that NMF can faithfully reproduce both positioning and content of test motifs. We show how the variation of the residual sum of squares can be used to give a robust estimate of the number of motifs or patterns in a sequence set. Our analysis distinguishes multiple motifs with significant overlap in sequence content and/or positioning. Finally, we demonstrate the use of the NMF approach through characterization of biologically interesting datasets. Specifically, an analysis of mRNA 3′-processing (cleavage and polyadenylation) sites from a broad range of higher eukaryotes reveals a conserved core pattern of three elements. Contact: joel.graber@jax.org Supplementary information: Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btn526</identifier><identifier>PMID: 18852176</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Biological and medical sciences ; Computational Biology - methods ; Fundamental and applied biological sciences. Psychology ; General aspects ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Original Papers ; Regulatory Sequences, Ribonucleic Acid ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Sequence Analysis, RNA</subject><ispartof>Bioinformatics, 2008-12, Vol.24 (23), p.2684-2690</ispartof><rights>2008 The Author(s) 2008</rights><rights>2009 INIST-CNRS</rights><rights>2008 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c642t-45861e25a68f3795f8e4e8c0d17a780ed4f22737eda749604057b251c4fd5d553</citedby><cites>FETCH-LOGICAL-c642t-45861e25a68f3795f8e4e8c0d17a780ed4f22737eda749604057b251c4fd5d553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2639279/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2639279/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20875938$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18852176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hutchins, Lucie N.</creatorcontrib><creatorcontrib>Murphy, Sean M.</creatorcontrib><creatorcontrib>Singh, Priyam</creatorcontrib><creatorcontrib>Graber, Joel H.</creatorcontrib><title>Position-dependent motif characterization using non-negative matrix factorization</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Cis-acting regulatory elements are frequently constrained by both sequence content and positioning relative to a functional site, such as a splice or polyadenylation site. We describe an approach to regulatory motif analysis based on non-negative matrix factorization (NMF). Whereas existing pattern recognition algorithms commonly focus primarily on sequence content, our method simultaneously characterizes both positioning and sequence content of putative motifs. Results: Tests on artificially generated sequences show that NMF can faithfully reproduce both positioning and content of test motifs. We show how the variation of the residual sum of squares can be used to give a robust estimate of the number of motifs or patterns in a sequence set. Our analysis distinguishes multiple motifs with significant overlap in sequence content and/or positioning. Finally, we demonstrate the use of the NMF approach through characterization of biologically interesting datasets. Specifically, an analysis of mRNA 3′-processing (cleavage and polyadenylation) sites from a broad range of higher eukaryotes reveals a conserved core pattern of three elements. Contact: joel.graber@jax.org Supplementary information: Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Computational Biology - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Original Papers</subject><subject>Regulatory Sequences, Ribonucleic Acid</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Sequence Analysis, RNA</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqN0dtuFCEYAOCJ0diDPoJmYqJ3Y4HheGPSbNy2cZNW4ym9ISwDW-oMrMA01acvm1lX641eQeD7D_BX1TMIXkMg2qOlC87bEAeVnU5Hy-wJog-qfYgpaBAg4mHZt5Q1mIN2rzpI6RoAAjHGj6s9yDlBkNH96v1FSC674JvOrI3vjM_1ELKztb5SUelsovupNqAek_Or2hfqzaoc3Zi6FI_utrbFhV_uSfXIqj6Zp9v1sPo0f_txdtoszk_OZseLRlOMcoMJp9Agoii3LRPEcoMN16CDTDEOTIctQqxlplMMCwowIGyJCNTYdqQjpD2s3kx51-NyMJ0unUfVy3V0g4o_ZFBO3r_x7kquwo1EtBWIiZLg1TZBDN9Hk7IcXNKm75U3YUySCg4Lhf-EUBBABcMFvvgLXocx-vILxXDKNnULIhPSMaQUjd21DIHcjFbeH62cRlvinv_53t9R21kW8HILVNKqt1F57dLOIcAZES0vDkwujOv_rt1MIS5lc7sLUvGbLK9iRJ5-vZTvLr_MFp8_zOW8vQN9UtTW</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Hutchins, Lucie N.</creator><creator>Murphy, Sean M.</creator><creator>Singh, Priyam</creator><creator>Graber, Joel H.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>TOX</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081201</creationdate><title>Position-dependent motif characterization using non-negative matrix factorization</title><author>Hutchins, Lucie N. ; Murphy, Sean M. ; Singh, Priyam ; Graber, Joel H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-45861e25a68f3795f8e4e8c0d17a780ed4f22737eda749604057b251c4fd5d553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Computational Biology - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Original Papers</topic><topic>Regulatory Sequences, Ribonucleic Acid</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Sequence Analysis, RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hutchins, Lucie N.</creatorcontrib><creatorcontrib>Murphy, Sean M.</creatorcontrib><creatorcontrib>Singh, Priyam</creatorcontrib><creatorcontrib>Graber, Joel H.</creatorcontrib><collection>Istex</collection><collection>Oxford Journals Open Access Collection</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hutchins, Lucie N.</au><au>Murphy, Sean M.</au><au>Singh, Priyam</au><au>Graber, Joel H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Position-dependent motif characterization using non-negative matrix factorization</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>24</volume><issue>23</issue><spage>2684</spage><epage>2690</epage><pages>2684-2690</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Cis-acting regulatory elements are frequently constrained by both sequence content and positioning relative to a functional site, such as a splice or polyadenylation site. We describe an approach to regulatory motif analysis based on non-negative matrix factorization (NMF). Whereas existing pattern recognition algorithms commonly focus primarily on sequence content, our method simultaneously characterizes both positioning and sequence content of putative motifs. Results: Tests on artificially generated sequences show that NMF can faithfully reproduce both positioning and content of test motifs. We show how the variation of the residual sum of squares can be used to give a robust estimate of the number of motifs or patterns in a sequence set. Our analysis distinguishes multiple motifs with significant overlap in sequence content and/or positioning. Finally, we demonstrate the use of the NMF approach through characterization of biologically interesting datasets. Specifically, an analysis of mRNA 3′-processing (cleavage and polyadenylation) sites from a broad range of higher eukaryotes reveals a conserved core pattern of three elements. Contact: joel.graber@jax.org Supplementary information: Supplementary data are available at Bioinformatics online.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>18852176</pmid><doi>10.1093/bioinformatics/btn526</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2008-12, Vol.24 (23), p.2684-2690 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2639279 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Biological and medical sciences Computational Biology - methods Fundamental and applied biological sciences. Psychology General aspects Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Original Papers Regulatory Sequences, Ribonucleic Acid RNA, Messenger - genetics RNA, Messenger - metabolism Sequence Analysis, RNA |
title | Position-dependent motif characterization using non-negative matrix factorization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Position-dependent%20motif%20characterization%20using%20non-negative%20matrix%20factorization&rft.jtitle=Bioinformatics&rft.au=Hutchins,%20Lucie%20N.&rft.date=2008-12-01&rft.volume=24&rft.issue=23&rft.spage=2684&rft.epage=2690&rft.pages=2684-2690&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btn526&rft_dat=%3Cproquest_pubme%3E69816391%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198673927&rft_id=info:pmid/18852176&rft_oup_id=10.1093/bioinformatics/btn526&rfr_iscdi=true |