Crystal Structures of Monomeric Actin Bound to Cytochalasin D

The fungal toxin cytochalasin D (CD) interferes with the normal dynamics of the actin cytoskeleton by binding to the barbed end of actin filaments. Despite its widespread use as a tool for studying actin-mediated processes, the exact location and nature of its binding to actin have not been previous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2008-12, Vol.384 (4), p.848-864
Hauptverfasser: Nair, Usha B., Joel, Peteranne B., Wan, Qun, Lowey, Susan, Rould, Mark A., Trybus, Kathleen M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 864
container_issue 4
container_start_page 848
container_title Journal of molecular biology
container_volume 384
creator Nair, Usha B.
Joel, Peteranne B.
Wan, Qun
Lowey, Susan
Rould, Mark A.
Trybus, Kathleen M.
description The fungal toxin cytochalasin D (CD) interferes with the normal dynamics of the actin cytoskeleton by binding to the barbed end of actin filaments. Despite its widespread use as a tool for studying actin-mediated processes, the exact location and nature of its binding to actin have not been previously determined. Here we describe two crystal structures of an expressed monomeric actin in complex with CD: one obtained by soaking preformed actin crystals with CD, and the other obtained by cocrystallization. The binding site for CD, in the hydrophobic cleft between actin subdomains 1 and 3, is the same in the two structures. Polar and hydrophobic contacts play equally important roles in CD binding, and six hydrogen bonds stabilize the actin–CD complex. Many unrelated actin-binding proteins and marine toxins target this cleft and the hydrophobic pocket at the front end of the cleft (viewing actin with subdomain 2 in the upper right corner). CD differs in that it binds to the back half of the cleft. The ability of CD to induce actin dimer formation and actin-catalyzed ATP hydrolysis may be related to its unique binding site and the necessity to fit its bulky macrocycle into this cleft. Contacts with residues lining this cleft appear to be crucial to capping and/or severing. The cocrystallized actin–CD structure also revealed changes in actin conformation. An ∼6° rotation of the smaller actin domain (subdomains 1 and 2) with respect to the larger domain (subdomains 3 and 4) results in small changes in crystal packing that allow the D-loop to adopt an extended loop structure instead of being disordered, as it is in most crystal structures of actin. We speculate that these changes represent a potential conformation that the actin monomer can adopt on the pathway to polymerization or in the filament.
doi_str_mv 10.1016/j.jmb.2008.09.082
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2638586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283608012539</els_id><sourcerecordid>20246439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-7f7e3440e2748d539cd998f421aed22c842e739f2b9be794019ba2a57c747bb23</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS1ERYeBH8AGRSy6S_ArsS0EUjstFKmIBbC2HOeG8Sixi-1Umn-PRzPisYGVJfu7x_ecg9ALghuCSfd61-zmvqEYywarBkv6CK0IlqqWHZOP0QpjSmsqWXeOnqa0wxi3jMsn6JxIxSQR3Qq93cR9ymaqvuS42LxESFUYq0_Bhxmis9Wlzc5XV2HxQ5VDtdnnYLdmMqncXj9DZ6OZEjw_nWv07f3N181tfff5w8fN5V1tW8FyLUYBjHMMVHA5tEzZQSk5ckoMDJRaySkIpkbaqx6E4pio3lDTCiu46HvK1ujdUfd-6WcYLPgczaTvo5tN3OtgnP77xbut_h4eNC1BtCWNNXp1FAgpO52sy2C3NngPNmtCZKcIKdDF6ZcYfiyQsp5dsjBNxkNYku6ULCRp_wtSTHnHmSogOYI2hpQijL9WJlgfKtQ7XSrUhwo1VrpUWGZe_un198SpswK8OQJQEn9wEA9-wFsYXDzYGYL7h_xPbJCrvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20246439</pqid></control><display><type>article</type><title>Crystal Structures of Monomeric Actin Bound to Cytochalasin D</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Nair, Usha B. ; Joel, Peteranne B. ; Wan, Qun ; Lowey, Susan ; Rould, Mark A. ; Trybus, Kathleen M.</creator><creatorcontrib>Nair, Usha B. ; Joel, Peteranne B. ; Wan, Qun ; Lowey, Susan ; Rould, Mark A. ; Trybus, Kathleen M. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>The fungal toxin cytochalasin D (CD) interferes with the normal dynamics of the actin cytoskeleton by binding to the barbed end of actin filaments. Despite its widespread use as a tool for studying actin-mediated processes, the exact location and nature of its binding to actin have not been previously determined. Here we describe two crystal structures of an expressed monomeric actin in complex with CD: one obtained by soaking preformed actin crystals with CD, and the other obtained by cocrystallization. The binding site for CD, in the hydrophobic cleft between actin subdomains 1 and 3, is the same in the two structures. Polar and hydrophobic contacts play equally important roles in CD binding, and six hydrogen bonds stabilize the actin–CD complex. Many unrelated actin-binding proteins and marine toxins target this cleft and the hydrophobic pocket at the front end of the cleft (viewing actin with subdomain 2 in the upper right corner). CD differs in that it binds to the back half of the cleft. The ability of CD to induce actin dimer formation and actin-catalyzed ATP hydrolysis may be related to its unique binding site and the necessity to fit its bulky macrocycle into this cleft. Contacts with residues lining this cleft appear to be crucial to capping and/or severing. The cocrystallized actin–CD structure also revealed changes in actin conformation. An ∼6° rotation of the smaller actin domain (subdomains 1 and 2) with respect to the larger domain (subdomains 3 and 4) results in small changes in crystal packing that allow the D-loop to adopt an extended loop structure instead of being disordered, as it is in most crystal structures of actin. We speculate that these changes represent a potential conformation that the actin monomer can adopt on the pathway to polymerization or in the filament.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2008.09.082</identifier><identifier>PMID: 18938176</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>actin ; Actins - chemistry ; Actins - metabolism ; Adenosine Triphosphate - metabolism ; Binding Sites ; Crystallography, X-Ray ; cytochalasin ; Cytochalasin D - metabolism ; domain motions ; filament capping ; fungal toxin ; Hydrolysis ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary</subject><ispartof>Journal of molecular biology, 2008-12, Vol.384 (4), p.848-864</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-7f7e3440e2748d539cd998f421aed22c842e739f2b9be794019ba2a57c747bb23</citedby><cites>FETCH-LOGICAL-c573t-7f7e3440e2748d539cd998f421aed22c842e739f2b9be794019ba2a57c747bb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022283608012539$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18938176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1186911$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nair, Usha B.</creatorcontrib><creatorcontrib>Joel, Peteranne B.</creatorcontrib><creatorcontrib>Wan, Qun</creatorcontrib><creatorcontrib>Lowey, Susan</creatorcontrib><creatorcontrib>Rould, Mark A.</creatorcontrib><creatorcontrib>Trybus, Kathleen M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Crystal Structures of Monomeric Actin Bound to Cytochalasin D</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>The fungal toxin cytochalasin D (CD) interferes with the normal dynamics of the actin cytoskeleton by binding to the barbed end of actin filaments. Despite its widespread use as a tool for studying actin-mediated processes, the exact location and nature of its binding to actin have not been previously determined. Here we describe two crystal structures of an expressed monomeric actin in complex with CD: one obtained by soaking preformed actin crystals with CD, and the other obtained by cocrystallization. The binding site for CD, in the hydrophobic cleft between actin subdomains 1 and 3, is the same in the two structures. Polar and hydrophobic contacts play equally important roles in CD binding, and six hydrogen bonds stabilize the actin–CD complex. Many unrelated actin-binding proteins and marine toxins target this cleft and the hydrophobic pocket at the front end of the cleft (viewing actin with subdomain 2 in the upper right corner). CD differs in that it binds to the back half of the cleft. The ability of CD to induce actin dimer formation and actin-catalyzed ATP hydrolysis may be related to its unique binding site and the necessity to fit its bulky macrocycle into this cleft. Contacts with residues lining this cleft appear to be crucial to capping and/or severing. The cocrystallized actin–CD structure also revealed changes in actin conformation. An ∼6° rotation of the smaller actin domain (subdomains 1 and 2) with respect to the larger domain (subdomains 3 and 4) results in small changes in crystal packing that allow the D-loop to adopt an extended loop structure instead of being disordered, as it is in most crystal structures of actin. We speculate that these changes represent a potential conformation that the actin monomer can adopt on the pathway to polymerization or in the filament.</description><subject>actin</subject><subject>Actins - chemistry</subject><subject>Actins - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Binding Sites</subject><subject>Crystallography, X-Ray</subject><subject>cytochalasin</subject><subject>Cytochalasin D - metabolism</subject><subject>domain motions</subject><subject>filament capping</subject><subject>fungal toxin</subject><subject>Hydrolysis</subject><subject>Models, Molecular</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Structure, Tertiary</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS1ERYeBH8AGRSy6S_ArsS0EUjstFKmIBbC2HOeG8Sixi-1Umn-PRzPisYGVJfu7x_ecg9ALghuCSfd61-zmvqEYywarBkv6CK0IlqqWHZOP0QpjSmsqWXeOnqa0wxi3jMsn6JxIxSQR3Qq93cR9ymaqvuS42LxESFUYq0_Bhxmis9Wlzc5XV2HxQ5VDtdnnYLdmMqncXj9DZ6OZEjw_nWv07f3N181tfff5w8fN5V1tW8FyLUYBjHMMVHA5tEzZQSk5ckoMDJRaySkIpkbaqx6E4pio3lDTCiu46HvK1ujdUfd-6WcYLPgczaTvo5tN3OtgnP77xbut_h4eNC1BtCWNNXp1FAgpO52sy2C3NngPNmtCZKcIKdDF6ZcYfiyQsp5dsjBNxkNYku6ULCRp_wtSTHnHmSogOYI2hpQijL9WJlgfKtQ7XSrUhwo1VrpUWGZe_un198SpswK8OQJQEn9wEA9-wFsYXDzYGYL7h_xPbJCrvQ</recordid><startdate>20081226</startdate><enddate>20081226</enddate><creator>Nair, Usha B.</creator><creator>Joel, Peteranne B.</creator><creator>Wan, Qun</creator><creator>Lowey, Susan</creator><creator>Rould, Mark A.</creator><creator>Trybus, Kathleen M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20081226</creationdate><title>Crystal Structures of Monomeric Actin Bound to Cytochalasin D</title><author>Nair, Usha B. ; Joel, Peteranne B. ; Wan, Qun ; Lowey, Susan ; Rould, Mark A. ; Trybus, Kathleen M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-7f7e3440e2748d539cd998f421aed22c842e739f2b9be794019ba2a57c747bb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>actin</topic><topic>Actins - chemistry</topic><topic>Actins - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Binding Sites</topic><topic>Crystallography, X-Ray</topic><topic>cytochalasin</topic><topic>Cytochalasin D - metabolism</topic><topic>domain motions</topic><topic>filament capping</topic><topic>fungal toxin</topic><topic>Hydrolysis</topic><topic>Models, Molecular</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Structure, Tertiary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nair, Usha B.</creatorcontrib><creatorcontrib>Joel, Peteranne B.</creatorcontrib><creatorcontrib>Wan, Qun</creatorcontrib><creatorcontrib>Lowey, Susan</creatorcontrib><creatorcontrib>Rould, Mark A.</creatorcontrib><creatorcontrib>Trybus, Kathleen M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nair, Usha B.</au><au>Joel, Peteranne B.</au><au>Wan, Qun</au><au>Lowey, Susan</au><au>Rould, Mark A.</au><au>Trybus, Kathleen M.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Structures of Monomeric Actin Bound to Cytochalasin D</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2008-12-26</date><risdate>2008</risdate><volume>384</volume><issue>4</issue><spage>848</spage><epage>864</epage><pages>848-864</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>The fungal toxin cytochalasin D (CD) interferes with the normal dynamics of the actin cytoskeleton by binding to the barbed end of actin filaments. Despite its widespread use as a tool for studying actin-mediated processes, the exact location and nature of its binding to actin have not been previously determined. Here we describe two crystal structures of an expressed monomeric actin in complex with CD: one obtained by soaking preformed actin crystals with CD, and the other obtained by cocrystallization. The binding site for CD, in the hydrophobic cleft between actin subdomains 1 and 3, is the same in the two structures. Polar and hydrophobic contacts play equally important roles in CD binding, and six hydrogen bonds stabilize the actin–CD complex. Many unrelated actin-binding proteins and marine toxins target this cleft and the hydrophobic pocket at the front end of the cleft (viewing actin with subdomain 2 in the upper right corner). CD differs in that it binds to the back half of the cleft. The ability of CD to induce actin dimer formation and actin-catalyzed ATP hydrolysis may be related to its unique binding site and the necessity to fit its bulky macrocycle into this cleft. Contacts with residues lining this cleft appear to be crucial to capping and/or severing. The cocrystallized actin–CD structure also revealed changes in actin conformation. An ∼6° rotation of the smaller actin domain (subdomains 1 and 2) with respect to the larger domain (subdomains 3 and 4) results in small changes in crystal packing that allow the D-loop to adopt an extended loop structure instead of being disordered, as it is in most crystal structures of actin. We speculate that these changes represent a potential conformation that the actin monomer can adopt on the pathway to polymerization or in the filament.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>18938176</pmid><doi>10.1016/j.jmb.2008.09.082</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2008-12, Vol.384 (4), p.848-864
issn 0022-2836
1089-8638
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2638586
source MEDLINE; Elsevier ScienceDirect Journals
subjects actin
Actins - chemistry
Actins - metabolism
Adenosine Triphosphate - metabolism
Binding Sites
Crystallography, X-Ray
cytochalasin
Cytochalasin D - metabolism
domain motions
filament capping
fungal toxin
Hydrolysis
Models, Molecular
Protein Binding
Protein Conformation
Protein Structure, Tertiary
title Crystal Structures of Monomeric Actin Bound to Cytochalasin D
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Structures%20of%20Monomeric%20Actin%20Bound%20to%20Cytochalasin%20D&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Nair,%20Usha%20B.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2008-12-26&rft.volume=384&rft.issue=4&rft.spage=848&rft.epage=864&rft.pages=848-864&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2008.09.082&rft_dat=%3Cproquest_pubme%3E20246439%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20246439&rft_id=info:pmid/18938176&rft_els_id=S0022283608012539&rfr_iscdi=true