Bone marrow-derived cell regulation of skeletal muscle regeneration

Limb regeneration requires the coordination of multiple stem cell populations to recapitulate the process of tissue formation. Therefore, bone marrow (BM) -derived cell regulation of skeletal muscle regeneration was examined in mice lacking the CC chemokine receptor 2 (CCR2). Myofiber size, numbers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FASEB journal 2009-02, Vol.23 (2), p.382-395
Hauptverfasser: Sun, Dongxu, Martinez, Carlo O, Ochoa, Oscar, Ruiz-Willhite, Lourdes, Bonilla, Jose R, Centonze, Victoria E, Waite, Lindsay L, Michalek, Joel E, McManus, Linda M, Shireman, Paula K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395
container_issue 2
container_start_page 382
container_title The FASEB journal
container_volume 23
creator Sun, Dongxu
Martinez, Carlo O
Ochoa, Oscar
Ruiz-Willhite, Lourdes
Bonilla, Jose R
Centonze, Victoria E
Waite, Lindsay L
Michalek, Joel E
McManus, Linda M
Shireman, Paula K
description Limb regeneration requires the coordination of multiple stem cell populations to recapitulate the process of tissue formation. Therefore, bone marrow (BM) -derived cell regulation of skeletal muscle regeneration was examined in mice lacking the CC chemokine receptor 2 (CCR2). Myofiber size, numbers of myogenic progenitor cells (MPCs), and recruitment of BM-derived cells and macrophages were assessed after cardiotoxin-induced injury of chimeric mice produced by transplanting BM from wild-type (WT) or CCR2⁻/⁻ mice into irradiated WT or CCR2⁻/⁻ host mice. Regardless of the host genotype, muscle regeneration and recruitment of BM-derived cells and macrophages were similar in mice replenished with WT BM, whereas BM-derived cells and macrophage accumulation were decreased and muscle regeneration was impaired in all animals receiving CCR2⁻/⁻ BM. Furthermore, numbers of MPCs (CD34⁺/Sca-1⁻/CD45⁻ cells) were significantly increased in mice receiving CCR2⁻/⁻ BM despite the decreased size of regenerated myofibers. Thus, the expression of CCR2 on BM-derived cells regulated macrophage recruitment into injured muscle, numbers of MPC, and the extent of regenerated myofiber size, all of which were independent of CCR2 expression on host-derived cells. Future studies in regenerative medicine must include consideration of the role of BM-derived cells, possibly macrophages, in CCR2-dependent events that regulate effective skeletal muscle regeneration.--Sun, D., Martinez, C. O., Ochoa, O., Ruiz-Willhite, L., Bonilla, J. R., Centonze, V. E., Waite, L. L., Michalek, J. E., McManus, L. M., Shireman, P. K. Bone marrow-derived cell regulation of skeletal muscle regeneration.
doi_str_mv 10.1096/fj.07-095901
format Article
fullrecord <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2630778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>FSB2FJ07095901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4851-5ca9b0318708ae04bd99ba6226ea0ccffe7582c9d8dc12b563391de30117f083</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhi0EgrLcOEMegMDYJl4uSLSiLKrEoeVsOc64pLgJcrqItyclFcuF0xy-f74Z_YScUrikoMWVn12CTEFnGugO6dGMQyqUgF3SA6VZKgRXB-SwaWYAQIGKfXJAlWISmOiRQb-uMJnbGOt1WmAsV1gkDkNIIk6XwS7KukpqnzRvGHBhQzJfNi7ghmKF8Ysfkz1vQ4Mn23lEJsO7yeAhHT3fPw5uR6m7VhlNM2d1DpwqCcoiXOeF1rkVjAm04Jz3KDPFnC5U4SjLM8G5pgVyoFR6UPyI3HTa92U-x8JhtYg2mPdYtu9_mNqW5i-pylczrVeGCQ5SbgQXncDFumki-u9dCmbTpfEzA9J0Xbbxs9_3fsLb8tqA6gLrMuDHvzIzHPfZ8Ankt_u8W_W2NnYay8a8jFkLgGZtPwz4J-aXis0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bone marrow-derived cell regulation of skeletal muscle regeneration</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Sun, Dongxu ; Martinez, Carlo O ; Ochoa, Oscar ; Ruiz-Willhite, Lourdes ; Bonilla, Jose R ; Centonze, Victoria E ; Waite, Lindsay L ; Michalek, Joel E ; McManus, Linda M ; Shireman, Paula K</creator><creatorcontrib>Sun, Dongxu ; Martinez, Carlo O ; Ochoa, Oscar ; Ruiz-Willhite, Lourdes ; Bonilla, Jose R ; Centonze, Victoria E ; Waite, Lindsay L ; Michalek, Joel E ; McManus, Linda M ; Shireman, Paula K</creatorcontrib><description>Limb regeneration requires the coordination of multiple stem cell populations to recapitulate the process of tissue formation. Therefore, bone marrow (BM) -derived cell regulation of skeletal muscle regeneration was examined in mice lacking the CC chemokine receptor 2 (CCR2). Myofiber size, numbers of myogenic progenitor cells (MPCs), and recruitment of BM-derived cells and macrophages were assessed after cardiotoxin-induced injury of chimeric mice produced by transplanting BM from wild-type (WT) or CCR2⁻/⁻ mice into irradiated WT or CCR2⁻/⁻ host mice. Regardless of the host genotype, muscle regeneration and recruitment of BM-derived cells and macrophages were similar in mice replenished with WT BM, whereas BM-derived cells and macrophage accumulation were decreased and muscle regeneration was impaired in all animals receiving CCR2⁻/⁻ BM. Furthermore, numbers of MPCs (CD34⁺/Sca-1⁻/CD45⁻ cells) were significantly increased in mice receiving CCR2⁻/⁻ BM despite the decreased size of regenerated myofibers. Thus, the expression of CCR2 on BM-derived cells regulated macrophage recruitment into injured muscle, numbers of MPC, and the extent of regenerated myofiber size, all of which were independent of CCR2 expression on host-derived cells. Future studies in regenerative medicine must include consideration of the role of BM-derived cells, possibly macrophages, in CCR2-dependent events that regulate effective skeletal muscle regeneration.--Sun, D., Martinez, C. O., Ochoa, O., Ruiz-Willhite, L., Bonilla, J. R., Centonze, V. E., Waite, L. L., Michalek, J. E., McManus, L. M., Shireman, P. K. Bone marrow-derived cell regulation of skeletal muscle regeneration.</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.07-095901</identifier><identifier>PMID: 18827026</identifier><language>eng</language><publisher>United States: The Federation of American Societies for Experimental Biology</publisher><subject>Animals ; Antigens, CD34 - metabolism ; Antigens, Ly - metabolism ; Bone Marrow Cells - cytology ; Bone Marrow Cells - drug effects ; Bone Marrow Cells - metabolism ; Bone Marrow Transplantation ; Cardiotoxins - toxicity ; CC chemokine receptor 2 ; CCR2 ; Cell Differentiation ; chimera ; inflammation ; Leukocyte Common Antigens - metabolism ; Male ; Membrane Proteins - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; monocyte/macrophage ; Muscle, Skeletal - cytology ; Muscle, Skeletal - injuries ; Muscle, Skeletal - physiology ; Muscle, Skeletal - surgery ; myogenic progenitor cell ; Receptors, CCR2 - deficiency ; Receptors, CCR2 - genetics ; Receptors, CCR2 - metabolism ; Regeneration ; Research Communications ; Stem Cells - cytology ; Stem Cells - metabolism</subject><ispartof>The FASEB journal, 2009-02, Vol.23 (2), p.382-395</ispartof><rights>FASEB</rights><rights>2009 The Author(s) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4851-5ca9b0318708ae04bd99ba6226ea0ccffe7582c9d8dc12b563391de30117f083</citedby><cites>FETCH-LOGICAL-c4851-5ca9b0318708ae04bd99ba6226ea0ccffe7582c9d8dc12b563391de30117f083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1096%2Ffj.07-095901$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1096%2Ffj.07-095901$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18827026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Dongxu</creatorcontrib><creatorcontrib>Martinez, Carlo O</creatorcontrib><creatorcontrib>Ochoa, Oscar</creatorcontrib><creatorcontrib>Ruiz-Willhite, Lourdes</creatorcontrib><creatorcontrib>Bonilla, Jose R</creatorcontrib><creatorcontrib>Centonze, Victoria E</creatorcontrib><creatorcontrib>Waite, Lindsay L</creatorcontrib><creatorcontrib>Michalek, Joel E</creatorcontrib><creatorcontrib>McManus, Linda M</creatorcontrib><creatorcontrib>Shireman, Paula K</creatorcontrib><title>Bone marrow-derived cell regulation of skeletal muscle regeneration</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>Limb regeneration requires the coordination of multiple stem cell populations to recapitulate the process of tissue formation. Therefore, bone marrow (BM) -derived cell regulation of skeletal muscle regeneration was examined in mice lacking the CC chemokine receptor 2 (CCR2). Myofiber size, numbers of myogenic progenitor cells (MPCs), and recruitment of BM-derived cells and macrophages were assessed after cardiotoxin-induced injury of chimeric mice produced by transplanting BM from wild-type (WT) or CCR2⁻/⁻ mice into irradiated WT or CCR2⁻/⁻ host mice. Regardless of the host genotype, muscle regeneration and recruitment of BM-derived cells and macrophages were similar in mice replenished with WT BM, whereas BM-derived cells and macrophage accumulation were decreased and muscle regeneration was impaired in all animals receiving CCR2⁻/⁻ BM. Furthermore, numbers of MPCs (CD34⁺/Sca-1⁻/CD45⁻ cells) were significantly increased in mice receiving CCR2⁻/⁻ BM despite the decreased size of regenerated myofibers. Thus, the expression of CCR2 on BM-derived cells regulated macrophage recruitment into injured muscle, numbers of MPC, and the extent of regenerated myofiber size, all of which were independent of CCR2 expression on host-derived cells. Future studies in regenerative medicine must include consideration of the role of BM-derived cells, possibly macrophages, in CCR2-dependent events that regulate effective skeletal muscle regeneration.--Sun, D., Martinez, C. O., Ochoa, O., Ruiz-Willhite, L., Bonilla, J. R., Centonze, V. E., Waite, L. L., Michalek, J. E., McManus, L. M., Shireman, P. K. Bone marrow-derived cell regulation of skeletal muscle regeneration.</description><subject>Animals</subject><subject>Antigens, CD34 - metabolism</subject><subject>Antigens, Ly - metabolism</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - drug effects</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Bone Marrow Transplantation</subject><subject>Cardiotoxins - toxicity</subject><subject>CC chemokine receptor 2</subject><subject>CCR2</subject><subject>Cell Differentiation</subject><subject>chimera</subject><subject>inflammation</subject><subject>Leukocyte Common Antigens - metabolism</subject><subject>Male</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>monocyte/macrophage</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - injuries</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscle, Skeletal - surgery</subject><subject>myogenic progenitor cell</subject><subject>Receptors, CCR2 - deficiency</subject><subject>Receptors, CCR2 - genetics</subject><subject>Receptors, CCR2 - metabolism</subject><subject>Regeneration</subject><subject>Research Communications</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp9kMlOwzAQhi0EgrLcOEMegMDYJl4uSLSiLKrEoeVsOc64pLgJcrqItyclFcuF0xy-f74Z_YScUrikoMWVn12CTEFnGugO6dGMQyqUgF3SA6VZKgRXB-SwaWYAQIGKfXJAlWISmOiRQb-uMJnbGOt1WmAsV1gkDkNIIk6XwS7KukpqnzRvGHBhQzJfNi7ghmKF8Ysfkz1vQ4Mn23lEJsO7yeAhHT3fPw5uR6m7VhlNM2d1DpwqCcoiXOeF1rkVjAm04Jz3KDPFnC5U4SjLM8G5pgVyoFR6UPyI3HTa92U-x8JhtYg2mPdYtu9_mNqW5i-pylczrVeGCQ5SbgQXncDFumki-u9dCmbTpfEzA9J0Xbbxs9_3fsLb8tqA6gLrMuDHvzIzHPfZ8Ankt_u8W_W2NnYay8a8jFkLgGZtPwz4J-aXis0</recordid><startdate>200902</startdate><enddate>200902</enddate><creator>Sun, Dongxu</creator><creator>Martinez, Carlo O</creator><creator>Ochoa, Oscar</creator><creator>Ruiz-Willhite, Lourdes</creator><creator>Bonilla, Jose R</creator><creator>Centonze, Victoria E</creator><creator>Waite, Lindsay L</creator><creator>Michalek, Joel E</creator><creator>McManus, Linda M</creator><creator>Shireman, Paula K</creator><general>The Federation of American Societies for Experimental Biology</general><general>Federation of American Societies for Experimental Biology</general><scope>FBQ</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>200902</creationdate><title>Bone marrow-derived cell regulation of skeletal muscle regeneration</title><author>Sun, Dongxu ; Martinez, Carlo O ; Ochoa, Oscar ; Ruiz-Willhite, Lourdes ; Bonilla, Jose R ; Centonze, Victoria E ; Waite, Lindsay L ; Michalek, Joel E ; McManus, Linda M ; Shireman, Paula K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4851-5ca9b0318708ae04bd99ba6226ea0ccffe7582c9d8dc12b563391de30117f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Antigens, CD34 - metabolism</topic><topic>Antigens, Ly - metabolism</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - drug effects</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Bone Marrow Transplantation</topic><topic>Cardiotoxins - toxicity</topic><topic>CC chemokine receptor 2</topic><topic>CCR2</topic><topic>Cell Differentiation</topic><topic>chimera</topic><topic>inflammation</topic><topic>Leukocyte Common Antigens - metabolism</topic><topic>Male</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>monocyte/macrophage</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - injuries</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscle, Skeletal - surgery</topic><topic>myogenic progenitor cell</topic><topic>Receptors, CCR2 - deficiency</topic><topic>Receptors, CCR2 - genetics</topic><topic>Receptors, CCR2 - metabolism</topic><topic>Regeneration</topic><topic>Research Communications</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Dongxu</creatorcontrib><creatorcontrib>Martinez, Carlo O</creatorcontrib><creatorcontrib>Ochoa, Oscar</creatorcontrib><creatorcontrib>Ruiz-Willhite, Lourdes</creatorcontrib><creatorcontrib>Bonilla, Jose R</creatorcontrib><creatorcontrib>Centonze, Victoria E</creatorcontrib><creatorcontrib>Waite, Lindsay L</creatorcontrib><creatorcontrib>Michalek, Joel E</creatorcontrib><creatorcontrib>McManus, Linda M</creatorcontrib><creatorcontrib>Shireman, Paula K</creatorcontrib><collection>AGRIS</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Dongxu</au><au>Martinez, Carlo O</au><au>Ochoa, Oscar</au><au>Ruiz-Willhite, Lourdes</au><au>Bonilla, Jose R</au><au>Centonze, Victoria E</au><au>Waite, Lindsay L</au><au>Michalek, Joel E</au><au>McManus, Linda M</au><au>Shireman, Paula K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bone marrow-derived cell regulation of skeletal muscle regeneration</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2009-02</date><risdate>2009</risdate><volume>23</volume><issue>2</issue><spage>382</spage><epage>395</epage><pages>382-395</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>Limb regeneration requires the coordination of multiple stem cell populations to recapitulate the process of tissue formation. Therefore, bone marrow (BM) -derived cell regulation of skeletal muscle regeneration was examined in mice lacking the CC chemokine receptor 2 (CCR2). Myofiber size, numbers of myogenic progenitor cells (MPCs), and recruitment of BM-derived cells and macrophages were assessed after cardiotoxin-induced injury of chimeric mice produced by transplanting BM from wild-type (WT) or CCR2⁻/⁻ mice into irradiated WT or CCR2⁻/⁻ host mice. Regardless of the host genotype, muscle regeneration and recruitment of BM-derived cells and macrophages were similar in mice replenished with WT BM, whereas BM-derived cells and macrophage accumulation were decreased and muscle regeneration was impaired in all animals receiving CCR2⁻/⁻ BM. Furthermore, numbers of MPCs (CD34⁺/Sca-1⁻/CD45⁻ cells) were significantly increased in mice receiving CCR2⁻/⁻ BM despite the decreased size of regenerated myofibers. Thus, the expression of CCR2 on BM-derived cells regulated macrophage recruitment into injured muscle, numbers of MPC, and the extent of regenerated myofiber size, all of which were independent of CCR2 expression on host-derived cells. Future studies in regenerative medicine must include consideration of the role of BM-derived cells, possibly macrophages, in CCR2-dependent events that regulate effective skeletal muscle regeneration.--Sun, D., Martinez, C. O., Ochoa, O., Ruiz-Willhite, L., Bonilla, J. R., Centonze, V. E., Waite, L. L., Michalek, J. E., McManus, L. M., Shireman, P. K. Bone marrow-derived cell regulation of skeletal muscle regeneration.</abstract><cop>United States</cop><pub>The Federation of American Societies for Experimental Biology</pub><pmid>18827026</pmid><doi>10.1096/fj.07-095901</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0892-6638
ispartof The FASEB journal, 2009-02, Vol.23 (2), p.382-395
issn 0892-6638
1530-6860
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2630778
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Animals
Antigens, CD34 - metabolism
Antigens, Ly - metabolism
Bone Marrow Cells - cytology
Bone Marrow Cells - drug effects
Bone Marrow Cells - metabolism
Bone Marrow Transplantation
Cardiotoxins - toxicity
CC chemokine receptor 2
CCR2
Cell Differentiation
chimera
inflammation
Leukocyte Common Antigens - metabolism
Male
Membrane Proteins - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
monocyte/macrophage
Muscle, Skeletal - cytology
Muscle, Skeletal - injuries
Muscle, Skeletal - physiology
Muscle, Skeletal - surgery
myogenic progenitor cell
Receptors, CCR2 - deficiency
Receptors, CCR2 - genetics
Receptors, CCR2 - metabolism
Regeneration
Research Communications
Stem Cells - cytology
Stem Cells - metabolism
title Bone marrow-derived cell regulation of skeletal muscle regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A35%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bone%20marrow-derived%20cell%20regulation%20of%20skeletal%20muscle%20regeneration&rft.jtitle=The%20FASEB%20journal&rft.au=Sun,%20Dongxu&rft.date=2009-02&rft.volume=23&rft.issue=2&rft.spage=382&rft.epage=395&rft.pages=382-395&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.07-095901&rft_dat=%3Cwiley_pubme%3EFSB2FJ07095901%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18827026&rfr_iscdi=true