Novel, Potent, and Selective GABAC Antagonists Inhibit Myopia Development and Facilitate Learning and Memory

This study reports pharmacological and physiological effects of cis- and trans-(3-aminocyclopentanyl)butylphosphinic acid (cis- and trans-3-ACPBPA). These compounds are conformationally restricted analogs of the orally active GABAB/C receptor antagonist (3-aminopropyl)-n-butylphosphinic acid (CGP367...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of pharmacology and experimental therapeutics 2009-02, Vol.328 (2), p.448-457
Hauptverfasser: Chebib, Mary, Hinton, Tina, Schmid, Katrina L., Brinkworth, Darren, Qian, Haohua, Matos, Susana, Kim, Hye-Lim, Abdel-Halim, Heba, Kumar, Rohan J., Johnston, Graham A.R., Hanrahan, Jane R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study reports pharmacological and physiological effects of cis- and trans-(3-aminocyclopentanyl)butylphosphinic acid (cis- and trans-3-ACPBPA). These compounds are conformationally restricted analogs of the orally active GABAB/C receptor antagonist (3-aminopropyl)-n-butylphosphinic acid (CGP36742 or SGS742). cis-[IC50(ρ1) = 5.06 μM and IC50(ρ2) = 11.08 μM; n = 4] and trans-3-ACPMPA [IC50(ρ1) = 72.58 μM and IC50(ρ2) = 189.7 μM; n = 4] seem competitive at GABAC receptors expressed in Xenopus laevis oocytes, having no effect as agonists (1 mM) but exerting weak antagonist (1 mM) effects on human GABAA and GABAB receptors. cis-3-ACPBPA was more potent and selective than the trans-compound, being more than 100 times more potent at GABAC than GABAA or GABAB receptors. cis-3-ACPBPA was further evaluated on dissociated rat retinal bipolar cells and dose-dependently inhibited the native GABAC receptor (IC50 = 47 ± 4.5 μM; n = 6). When applied to the eye as intravitreal injections, cis- and trans-3-ACPBPA prevented experimental myopia development and inhibited the associated vitreous chamber elongation, in a dose-dependent manner in the chick model. Doses only 10 times greater than required to inhibit recombinant GABAC receptors caused the antimyopia effects. Using intraperitoneal administration, cis- (30 mg/kg) and trans-3-ACPBPA (100 mg/kg) enhanced learning and memory in male Wistar rats; compared with vehicle there was a significant reduction in time for rats to find the platform in the Morris water maze task (p < 0.05; n = 10). As the physiological effects of cis- and trans-3-ACPBPA are similar to those reported for CGP36742, the memory and refractive effects of CGP36742 may be due in part to its GABAC activity.
ISSN:0022-3565
1521-0103
DOI:10.1124/jpet.108.146464