Analysis of the wild-type and mutant genes encoding the enzyme kynurenine monooxygenase of the yellow fever mosquito, Aedes aegypti

Kynurenine 3-monooxygenase (KMO) catalyses the hydroxylation of kynurenine to 3-hydroxykynurenine. KMO has a key role in tryptophan catabolism and synthesis of ommochrome pigments in mosquitoes. The gene encoding this enzyme in the yellow fever mosquito, Aedes aegypti, is called kynurenine hydroxyla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insect molecular biology 2003-10, Vol.12 (5), p.483-490
Hauptverfasser: Han, Q, Calvo, E, Marinotti, O, Fang, J, Rizzi, M, James, A.A, Li, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 490
container_issue 5
container_start_page 483
container_title Insect molecular biology
container_volume 12
creator Han, Q
Calvo, E
Marinotti, O
Fang, J
Rizzi, M
James, A.A
Li, J
description Kynurenine 3-monooxygenase (KMO) catalyses the hydroxylation of kynurenine to 3-hydroxykynurenine. KMO has a key role in tryptophan catabolism and synthesis of ommochrome pigments in mosquitoes. The gene encoding this enzyme in the yellow fever mosquito, Aedes aegypti, is called kynurenine hydroxylase (kh) and a mutant allele that produces white eyes has been designated khw. A number of cDNA clones representative of wild-type and mutant genes were isolated. Sequence analyses of the wild-type and mutant cDNAs revealed a deletion of 162 nucleotides in the mutant gene near the 3'-end of the deduced coding region. RT-PCR analyses confirm the transcription of a truncated mRNA in the mutant strain. The in-frame deletion results in a loss of 54 amino acids, which disrupts a major α-helix and which probably accounts for the loss of activity of the enzyme. Recombinant Ae. aegypti KMO showed high substrate specificity for kynurenine with optimum activity at 40 °C and pH = 7.5. Kinetic parameters and inhibition of KMO activity by Cl- and pyridoxal-5-phosphate were determined.
doi_str_mv 10.1046/j.1365-2583.2003.00433.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2629591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73662912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6283-d7c7586f00924eb02241e8c3f3a1121e60cdd9689a7f1ec43eb3caded36ba40a3</originalsourceid><addsrcrecordid>eNqNkV1v0zAUhiMEYmXwF8BXXC3FH4kTSwipm9iYKEN8TFweuclJ5y6xuzjZGm7547hLKXAFVz7Sed5XPnqiiDA6ZTSRr1ZTJmQa8zQXU06pmFKaCDHdPIgm-8XDaEKV5DGjWXoQPfF-RSnNlVSPowPGVZaoVEyiHzOr68EbT1xFuiskd6Yu425YI9G2JE3faduRJVr0BG3hSmOX9xza70OD5HqwfYvWWCSNs85thsBqj7_qBqxrd0cqvMU2EP6mN507IjMsQ6HG5bDuzNPoUaVrj89272F0efr268m7eP7x7PxkNo8LyXMRl1mRpbmsKFU8wQXlPGGYF6ISmjHOUNKiLJXMlc4qhkUicCEKXWIp5EInVIvD6M3Yu-4XDZYF2q7VNaxb0-h2AKcN_L2x5gqW7ha45CpVLBS83BW07qZH30FjfBEu1BZd7yETMpCM_xNkuWJMijSA-QgWrfO-xWr_G0ZhqxpWsDUKW6OwVQ33qmETos__vOZ3cOc2AK9HICjF4b-L4fzDcRhCPB7jxne42cd1ew0yE1kK3y7OgL__PGenx5_gIvAvRr7SDvSyNR4uv3DKRPCV0owq8RPvptPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18911635</pqid></control><display><type>article</type><title>Analysis of the wild-type and mutant genes encoding the enzyme kynurenine monooxygenase of the yellow fever mosquito, Aedes aegypti</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Han, Q ; Calvo, E ; Marinotti, O ; Fang, J ; Rizzi, M ; James, A.A ; Li, J</creator><creatorcontrib>Han, Q ; Calvo, E ; Marinotti, O ; Fang, J ; Rizzi, M ; James, A.A ; Li, J</creatorcontrib><description>Kynurenine 3-monooxygenase (KMO) catalyses the hydroxylation of kynurenine to 3-hydroxykynurenine. KMO has a key role in tryptophan catabolism and synthesis of ommochrome pigments in mosquitoes. The gene encoding this enzyme in the yellow fever mosquito, Aedes aegypti, is called kynurenine hydroxylase (kh) and a mutant allele that produces white eyes has been designated khw. A number of cDNA clones representative of wild-type and mutant genes were isolated. Sequence analyses of the wild-type and mutant cDNAs revealed a deletion of 162 nucleotides in the mutant gene near the 3'-end of the deduced coding region. RT-PCR analyses confirm the transcription of a truncated mRNA in the mutant strain. The in-frame deletion results in a loss of 54 amino acids, which disrupts a major α-helix and which probably accounts for the loss of activity of the enzyme. Recombinant Ae. aegypti KMO showed high substrate specificity for kynurenine with optimum activity at 40 °C and pH = 7.5. Kinetic parameters and inhibition of KMO activity by Cl- and pyridoxal-5-phosphate were determined.</description><identifier>ISSN: 0962-1075</identifier><identifier>EISSN: 1365-2583</identifier><identifier>DOI: 10.1046/j.1365-2583.2003.00433.x</identifier><identifier>PMID: 12974953</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>3-hydroxykynurenine ; Aedes - enzymology ; Aedes - genetics ; Aedes aegypti ; amino acid sequences ; Animals ; complementary DNA ; Culicidae ; deletion mutants ; DNA, Complementary - genetics ; DNA, Complementary - isolation &amp; purification ; Electrophoresis, Polyacrylamide Gel ; enzyme activity ; enzyme inhibition ; enzyme kinetics ; Gene Deletion ; gene expression ; Gene Expression Profiling ; insect vectors ; Kinetics ; KMO gene ; Kynurenine ; Kynurenine 3-Monooxygenase ; kynurenine hydroxylase ; messenger RNA ; Mixed Function Oxygenases - chemistry ; Mixed Function Oxygenases - genetics ; molecular sequence data ; mutants ; mutation ; nucleotide sequences ; open reading frames ; oxygenases ; recombinant proteins ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Alignment ; structural genes ; substrate specificity ; truncation mutants ; white eye ; Yellow fever virus</subject><ispartof>Insect molecular biology, 2003-10, Vol.12 (5), p.483-490</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6283-d7c7586f00924eb02241e8c3f3a1121e60cdd9689a7f1ec43eb3caded36ba40a3</citedby><cites>FETCH-LOGICAL-c6283-d7c7586f00924eb02241e8c3f3a1121e60cdd9689a7f1ec43eb3caded36ba40a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-2583.2003.00433.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-2583.2003.00433.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12974953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Q</creatorcontrib><creatorcontrib>Calvo, E</creatorcontrib><creatorcontrib>Marinotti, O</creatorcontrib><creatorcontrib>Fang, J</creatorcontrib><creatorcontrib>Rizzi, M</creatorcontrib><creatorcontrib>James, A.A</creatorcontrib><creatorcontrib>Li, J</creatorcontrib><title>Analysis of the wild-type and mutant genes encoding the enzyme kynurenine monooxygenase of the yellow fever mosquito, Aedes aegypti</title><title>Insect molecular biology</title><addtitle>Insect Mol Biol</addtitle><description>Kynurenine 3-monooxygenase (KMO) catalyses the hydroxylation of kynurenine to 3-hydroxykynurenine. KMO has a key role in tryptophan catabolism and synthesis of ommochrome pigments in mosquitoes. The gene encoding this enzyme in the yellow fever mosquito, Aedes aegypti, is called kynurenine hydroxylase (kh) and a mutant allele that produces white eyes has been designated khw. A number of cDNA clones representative of wild-type and mutant genes were isolated. Sequence analyses of the wild-type and mutant cDNAs revealed a deletion of 162 nucleotides in the mutant gene near the 3'-end of the deduced coding region. RT-PCR analyses confirm the transcription of a truncated mRNA in the mutant strain. The in-frame deletion results in a loss of 54 amino acids, which disrupts a major α-helix and which probably accounts for the loss of activity of the enzyme. Recombinant Ae. aegypti KMO showed high substrate specificity for kynurenine with optimum activity at 40 °C and pH = 7.5. Kinetic parameters and inhibition of KMO activity by Cl- and pyridoxal-5-phosphate were determined.</description><subject>3-hydroxykynurenine</subject><subject>Aedes - enzymology</subject><subject>Aedes - genetics</subject><subject>Aedes aegypti</subject><subject>amino acid sequences</subject><subject>Animals</subject><subject>complementary DNA</subject><subject>Culicidae</subject><subject>deletion mutants</subject><subject>DNA, Complementary - genetics</subject><subject>DNA, Complementary - isolation &amp; purification</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>enzyme activity</subject><subject>enzyme inhibition</subject><subject>enzyme kinetics</subject><subject>Gene Deletion</subject><subject>gene expression</subject><subject>Gene Expression Profiling</subject><subject>insect vectors</subject><subject>Kinetics</subject><subject>KMO gene</subject><subject>Kynurenine</subject><subject>Kynurenine 3-Monooxygenase</subject><subject>kynurenine hydroxylase</subject><subject>messenger RNA</subject><subject>Mixed Function Oxygenases - chemistry</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>molecular sequence data</subject><subject>mutants</subject><subject>mutation</subject><subject>nucleotide sequences</subject><subject>open reading frames</subject><subject>oxygenases</subject><subject>recombinant proteins</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Sequence Alignment</subject><subject>structural genes</subject><subject>substrate specificity</subject><subject>truncation mutants</subject><subject>white eye</subject><subject>Yellow fever virus</subject><issn>0962-1075</issn><issn>1365-2583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1v0zAUhiMEYmXwF8BXXC3FH4kTSwipm9iYKEN8TFweuclJ5y6xuzjZGm7547hLKXAFVz7Sed5XPnqiiDA6ZTSRr1ZTJmQa8zQXU06pmFKaCDHdPIgm-8XDaEKV5DGjWXoQPfF-RSnNlVSPowPGVZaoVEyiHzOr68EbT1xFuiskd6Yu425YI9G2JE3faduRJVr0BG3hSmOX9xza70OD5HqwfYvWWCSNs85thsBqj7_qBqxrd0cqvMU2EP6mN507IjMsQ6HG5bDuzNPoUaVrj89272F0efr268m7eP7x7PxkNo8LyXMRl1mRpbmsKFU8wQXlPGGYF6ISmjHOUNKiLJXMlc4qhkUicCEKXWIp5EInVIvD6M3Yu-4XDZYF2q7VNaxb0-h2AKcN_L2x5gqW7ha45CpVLBS83BW07qZH30FjfBEu1BZd7yETMpCM_xNkuWJMijSA-QgWrfO-xWr_G0ZhqxpWsDUKW6OwVQ33qmETos__vOZ3cOc2AK9HICjF4b-L4fzDcRhCPB7jxne42cd1ew0yE1kK3y7OgL__PGenx5_gIvAvRr7SDvSyNR4uv3DKRPCV0owq8RPvptPg</recordid><startdate>200310</startdate><enddate>200310</enddate><creator>Han, Q</creator><creator>Calvo, E</creator><creator>Marinotti, O</creator><creator>Fang, J</creator><creator>Rizzi, M</creator><creator>James, A.A</creator><creator>Li, J</creator><general>Blackwell Science Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200310</creationdate><title>Analysis of the wild-type and mutant genes encoding the enzyme kynurenine monooxygenase of the yellow fever mosquito, Aedes aegypti</title><author>Han, Q ; Calvo, E ; Marinotti, O ; Fang, J ; Rizzi, M ; James, A.A ; Li, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6283-d7c7586f00924eb02241e8c3f3a1121e60cdd9689a7f1ec43eb3caded36ba40a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>3-hydroxykynurenine</topic><topic>Aedes - enzymology</topic><topic>Aedes - genetics</topic><topic>Aedes aegypti</topic><topic>amino acid sequences</topic><topic>Animals</topic><topic>complementary DNA</topic><topic>Culicidae</topic><topic>deletion mutants</topic><topic>DNA, Complementary - genetics</topic><topic>DNA, Complementary - isolation &amp; purification</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>enzyme activity</topic><topic>enzyme inhibition</topic><topic>enzyme kinetics</topic><topic>Gene Deletion</topic><topic>gene expression</topic><topic>Gene Expression Profiling</topic><topic>insect vectors</topic><topic>Kinetics</topic><topic>KMO gene</topic><topic>Kynurenine</topic><topic>Kynurenine 3-Monooxygenase</topic><topic>kynurenine hydroxylase</topic><topic>messenger RNA</topic><topic>Mixed Function Oxygenases - chemistry</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>molecular sequence data</topic><topic>mutants</topic><topic>mutation</topic><topic>nucleotide sequences</topic><topic>open reading frames</topic><topic>oxygenases</topic><topic>recombinant proteins</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Sequence Alignment</topic><topic>structural genes</topic><topic>substrate specificity</topic><topic>truncation mutants</topic><topic>white eye</topic><topic>Yellow fever virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Q</creatorcontrib><creatorcontrib>Calvo, E</creatorcontrib><creatorcontrib>Marinotti, O</creatorcontrib><creatorcontrib>Fang, J</creatorcontrib><creatorcontrib>Rizzi, M</creatorcontrib><creatorcontrib>James, A.A</creatorcontrib><creatorcontrib>Li, J</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Insect molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Q</au><au>Calvo, E</au><au>Marinotti, O</au><au>Fang, J</au><au>Rizzi, M</au><au>James, A.A</au><au>Li, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the wild-type and mutant genes encoding the enzyme kynurenine monooxygenase of the yellow fever mosquito, Aedes aegypti</atitle><jtitle>Insect molecular biology</jtitle><addtitle>Insect Mol Biol</addtitle><date>2003-10</date><risdate>2003</risdate><volume>12</volume><issue>5</issue><spage>483</spage><epage>490</epage><pages>483-490</pages><issn>0962-1075</issn><eissn>1365-2583</eissn><abstract>Kynurenine 3-monooxygenase (KMO) catalyses the hydroxylation of kynurenine to 3-hydroxykynurenine. KMO has a key role in tryptophan catabolism and synthesis of ommochrome pigments in mosquitoes. The gene encoding this enzyme in the yellow fever mosquito, Aedes aegypti, is called kynurenine hydroxylase (kh) and a mutant allele that produces white eyes has been designated khw. A number of cDNA clones representative of wild-type and mutant genes were isolated. Sequence analyses of the wild-type and mutant cDNAs revealed a deletion of 162 nucleotides in the mutant gene near the 3'-end of the deduced coding region. RT-PCR analyses confirm the transcription of a truncated mRNA in the mutant strain. The in-frame deletion results in a loss of 54 amino acids, which disrupts a major α-helix and which probably accounts for the loss of activity of the enzyme. Recombinant Ae. aegypti KMO showed high substrate specificity for kynurenine with optimum activity at 40 °C and pH = 7.5. Kinetic parameters and inhibition of KMO activity by Cl- and pyridoxal-5-phosphate were determined.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>12974953</pmid><doi>10.1046/j.1365-2583.2003.00433.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1075
ispartof Insect molecular biology, 2003-10, Vol.12 (5), p.483-490
issn 0962-1075
1365-2583
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2629591
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 3-hydroxykynurenine
Aedes - enzymology
Aedes - genetics
Aedes aegypti
amino acid sequences
Animals
complementary DNA
Culicidae
deletion mutants
DNA, Complementary - genetics
DNA, Complementary - isolation & purification
Electrophoresis, Polyacrylamide Gel
enzyme activity
enzyme inhibition
enzyme kinetics
Gene Deletion
gene expression
Gene Expression Profiling
insect vectors
Kinetics
KMO gene
Kynurenine
Kynurenine 3-Monooxygenase
kynurenine hydroxylase
messenger RNA
Mixed Function Oxygenases - chemistry
Mixed Function Oxygenases - genetics
molecular sequence data
mutants
mutation
nucleotide sequences
open reading frames
oxygenases
recombinant proteins
Reverse Transcriptase Polymerase Chain Reaction
Sequence Alignment
structural genes
substrate specificity
truncation mutants
white eye
Yellow fever virus
title Analysis of the wild-type and mutant genes encoding the enzyme kynurenine monooxygenase of the yellow fever mosquito, Aedes aegypti
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20wild-type%20and%20mutant%20genes%20encoding%20the%20enzyme%20kynurenine%20monooxygenase%20of%20the%20yellow%20fever%20mosquito,%20Aedes%20aegypti&rft.jtitle=Insect%20molecular%20biology&rft.au=Han,%20Q&rft.date=2003-10&rft.volume=12&rft.issue=5&rft.spage=483&rft.epage=490&rft.pages=483-490&rft.issn=0962-1075&rft.eissn=1365-2583&rft_id=info:doi/10.1046/j.1365-2583.2003.00433.x&rft_dat=%3Cproquest_pubme%3E73662912%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18911635&rft_id=info:pmid/12974953&rfr_iscdi=true