Roles of IP3R and RyR Ca2+ Channels in Endoplasmic Reticulum Stress and β-Cell Death

Roles of IP 3 R and RyR Ca 2+ Channels in Endoplasmic Reticulum Stress and β-Cell Death Dan S. Luciani , Kamila S. Gwiazda , Ting-Lin B. Yang , Tatyana B. Kalynyak , Yaryna Bychkivska , Matthew H.Z. Frey , Kristin D. Jeffrey , Arthur V. Sampaio , T. Michael Underhill and James D. Johnson From the De...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2009-02, Vol.58 (2), p.422-432
Hauptverfasser: Luciani, Dan S, Gwiazda, Kamila S, Yang, Ting-Lin B, Kalynyak, Tatyana B, Bychkivska, Yaryna, Frey, Matthew H Z, Jeffrey, Kristin D, Sampaio, Arthur V, Underhill, T Michael, Johnson, James D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 432
container_issue 2
container_start_page 422
container_title Diabetes (New York, N.Y.)
container_volume 58
creator Luciani, Dan S
Gwiazda, Kamila S
Yang, Ting-Lin B
Kalynyak, Tatyana B
Bychkivska, Yaryna
Frey, Matthew H Z
Jeffrey, Kristin D
Sampaio, Arthur V
Underhill, T Michael
Johnson, James D
description Roles of IP 3 R and RyR Ca 2+ Channels in Endoplasmic Reticulum Stress and β-Cell Death Dan S. Luciani , Kamila S. Gwiazda , Ting-Lin B. Yang , Tatyana B. Kalynyak , Yaryna Bychkivska , Matthew H.Z. Frey , Kristin D. Jeffrey , Arthur V. Sampaio , T. Michael Underhill and James D. Johnson From the Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Comlumbia, Canada Corresponding author: James D. Johnson, jimjohn{at}interchange.ubc.ca Abstract OBJECTIVE— Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of diabetes, but the roles of specific ER Ca 2+ release channels in the ER stress–associated apoptosis pathway remain unknown. Here, we examined the effects of stimulating or inhibiting the ER-resident inositol trisphosphate receptors (IP 3 Rs) and the ryanodine receptors (RyRs) on the induction of β-cell ER stress and apoptosis. RESEARCH DESIGN AND METHODS— Kinetics of β-cell death were tracked by imaging propidium iodide incorporation and caspase-3 activity in real time. ER stress and apoptosis were assessed by Western blot. Mitochondrial membrane potential was monitored by flow cytometry. Cytosolic Ca 2+ was imaged using fura-2, and genetically encoded fluorescence resonance energy transfer (FRET)–based probes were used to measure Ca 2+ in ER and mitochondria. RESULTS— Neither RyR nor IP 3 R inhibition, alone or in combination, caused robust death within 24 h. In contrast, blocking sarco/endoplasmic reticulum ATPase (SERCA) pumps depleted ER Ca 2+ and induced marked phosphorylation of PKR-like ER kinase (PERK) and eukaryotic initiation factor-2α (eIF2α), C/EBP homologous protein (CHOP)–associated ER stress, caspase-3 activation, and death. Notably, ER stress following SERCA inhibition was attenuated by blocking IP 3 Rs and RyRs. Conversely, stimulation of ER Ca 2+ release channels accelerated thapsigargin-induced ER depletion and apoptosis. SERCA block also activated caspase-9 and induced perturbations of the mitochondrial membrane potential, resulting eventually in the loss of mitochondrial polarization. CONCLUSIONS— This study demonstrates that the activity of ER Ca 2+ channels regulates the susceptibility of β-cells to ER stress resulting from impaired SERCA function. Our results also suggest the involvement of mitochondria in β-cell apoptosis associated with dysfunctional β-cell ER Ca 2+ homeostasis and ER stress. Footnotes Published ahead of print at http://diabetes.diabetesjou
doi_str_mv 10.2337/db07-1762
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2628616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66855786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-40fb37ace21391dc3c7b14d11f23c70cc4e1dfeff57b8bc9d4b89a76bbeaa8943</originalsourceid><addsrcrecordid>eNpVkdtq3DAQhkVpSbZJLvoCRVeBNrjRwWtZN4Hgbg4QaHES6J3QYRQr-LCx7JZ9rTxIn6l2dmla5kLD6Jt_RvoR-kDJF8a5OHWGiISKjL1BCyq5TDgTP96iBSGUTXUp9tH7GB8JIdkUe2ifSsI5l3KB7suuhog7j6-_8xLr1uFyU-JCsxNcVLptoY44tHjVum5d69gEi0sYgh3rscG3Qw8xvnT9fk4KqGv8FfRQHaJ3XtcRjnbnAbq_WN0VV8nNt8vr4vwmsZznQ5ISb7jQFhjlkjrLrTA0dZR6NqXE2hSo8-D9UpjcWOlSk0stMmNA61ym_ACdbXXXo2nAWWiHXtdq3YdG9xvV6aD-v2lDpR66n4plLM9oNgkc7wT67mmEOKgmRDu9Q7fQjVFlWb5cinwGP21B23cx9uD_DqFEzSao2QQ1mzCxH__d6pXc_foEfN4CVXiofoUelAvawADxNVnmiqmUMf4HWQaSLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66855786</pqid></control><display><type>article</type><title>Roles of IP3R and RyR Ca2+ Channels in Endoplasmic Reticulum Stress and β-Cell Death</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Luciani, Dan S ; Gwiazda, Kamila S ; Yang, Ting-Lin B ; Kalynyak, Tatyana B ; Bychkivska, Yaryna ; Frey, Matthew H Z ; Jeffrey, Kristin D ; Sampaio, Arthur V ; Underhill, T Michael ; Johnson, James D</creator><creatorcontrib>Luciani, Dan S ; Gwiazda, Kamila S ; Yang, Ting-Lin B ; Kalynyak, Tatyana B ; Bychkivska, Yaryna ; Frey, Matthew H Z ; Jeffrey, Kristin D ; Sampaio, Arthur V ; Underhill, T Michael ; Johnson, James D</creatorcontrib><description>Roles of IP 3 R and RyR Ca 2+ Channels in Endoplasmic Reticulum Stress and β-Cell Death Dan S. Luciani , Kamila S. Gwiazda , Ting-Lin B. Yang , Tatyana B. Kalynyak , Yaryna Bychkivska , Matthew H.Z. Frey , Kristin D. Jeffrey , Arthur V. Sampaio , T. Michael Underhill and James D. Johnson From the Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Comlumbia, Canada Corresponding author: James D. Johnson, jimjohn{at}interchange.ubc.ca Abstract OBJECTIVE— Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of diabetes, but the roles of specific ER Ca 2+ release channels in the ER stress–associated apoptosis pathway remain unknown. Here, we examined the effects of stimulating or inhibiting the ER-resident inositol trisphosphate receptors (IP 3 Rs) and the ryanodine receptors (RyRs) on the induction of β-cell ER stress and apoptosis. RESEARCH DESIGN AND METHODS— Kinetics of β-cell death were tracked by imaging propidium iodide incorporation and caspase-3 activity in real time. ER stress and apoptosis were assessed by Western blot. Mitochondrial membrane potential was monitored by flow cytometry. Cytosolic Ca 2+ was imaged using fura-2, and genetically encoded fluorescence resonance energy transfer (FRET)–based probes were used to measure Ca 2+ in ER and mitochondria. RESULTS— Neither RyR nor IP 3 R inhibition, alone or in combination, caused robust death within 24 h. In contrast, blocking sarco/endoplasmic reticulum ATPase (SERCA) pumps depleted ER Ca 2+ and induced marked phosphorylation of PKR-like ER kinase (PERK) and eukaryotic initiation factor-2α (eIF2α), C/EBP homologous protein (CHOP)–associated ER stress, caspase-3 activation, and death. Notably, ER stress following SERCA inhibition was attenuated by blocking IP 3 Rs and RyRs. Conversely, stimulation of ER Ca 2+ release channels accelerated thapsigargin-induced ER depletion and apoptosis. SERCA block also activated caspase-9 and induced perturbations of the mitochondrial membrane potential, resulting eventually in the loss of mitochondrial polarization. CONCLUSIONS— This study demonstrates that the activity of ER Ca 2+ channels regulates the susceptibility of β-cells to ER stress resulting from impaired SERCA function. Our results also suggest the involvement of mitochondria in β-cell apoptosis associated with dysfunctional β-cell ER Ca 2+ homeostasis and ER stress. Footnotes Published ahead of print at http://diabetes.diabetesjournals.org on 25 November 2008. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C Section 1734 solely to indicate this fact. Accepted November 5, 2008. Received December 14, 2007. DIABETES</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db07-1762</identifier><identifier>PMID: 19033399</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Animals ; Calcium - metabolism ; Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology ; Caspase 3 - metabolism ; Cell Death - drug effects ; Cell Line ; Cells, Cultured ; Endoplasmic Reticulum - drug effects ; Endoplasmic Reticulum - metabolism ; Flow Cytometry ; Fluorescence Resonance Energy Transfer ; Immunoblotting ; Inositol 1,4,5-Trisphosphate Receptors - agonists ; Inositol 1,4,5-Trisphosphate Receptors - antagonists &amp; inhibitors ; Inositol 1,4,5-Trisphosphate Receptors - physiology ; Insulin-Secreting Cells - cytology ; Insulin-Secreting Cells - drug effects ; Insulin-Secreting Cells - metabolism ; Islet Studies ; Kinetics ; Macrocyclic Compounds - pharmacology ; Male ; Membrane Potential, Mitochondrial - drug effects ; Mice ; Mice, Inbred C57BL ; Organometallic Compounds - pharmacology ; Oxazoles - pharmacology ; Propidium - metabolism ; Ryanodine - pharmacology ; Ryanodine Receptor Calcium Release Channel - physiology ; Sarcoplasmic Reticulum Calcium-Transporting ATPases ; Thapsigargin - pharmacology</subject><ispartof>Diabetes (New York, N.Y.), 2009-02, Vol.58 (2), p.422-432</ispartof><rights>Copyright © 2009, American Diabetes Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-40fb37ace21391dc3c7b14d11f23c70cc4e1dfeff57b8bc9d4b89a76bbeaa8943</citedby><cites>FETCH-LOGICAL-c338t-40fb37ace21391dc3c7b14d11f23c70cc4e1dfeff57b8bc9d4b89a76bbeaa8943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628616/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628616/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19033399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luciani, Dan S</creatorcontrib><creatorcontrib>Gwiazda, Kamila S</creatorcontrib><creatorcontrib>Yang, Ting-Lin B</creatorcontrib><creatorcontrib>Kalynyak, Tatyana B</creatorcontrib><creatorcontrib>Bychkivska, Yaryna</creatorcontrib><creatorcontrib>Frey, Matthew H Z</creatorcontrib><creatorcontrib>Jeffrey, Kristin D</creatorcontrib><creatorcontrib>Sampaio, Arthur V</creatorcontrib><creatorcontrib>Underhill, T Michael</creatorcontrib><creatorcontrib>Johnson, James D</creatorcontrib><title>Roles of IP3R and RyR Ca2+ Channels in Endoplasmic Reticulum Stress and β-Cell Death</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>Roles of IP 3 R and RyR Ca 2+ Channels in Endoplasmic Reticulum Stress and β-Cell Death Dan S. Luciani , Kamila S. Gwiazda , Ting-Lin B. Yang , Tatyana B. Kalynyak , Yaryna Bychkivska , Matthew H.Z. Frey , Kristin D. Jeffrey , Arthur V. Sampaio , T. Michael Underhill and James D. Johnson From the Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Comlumbia, Canada Corresponding author: James D. Johnson, jimjohn{at}interchange.ubc.ca Abstract OBJECTIVE— Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of diabetes, but the roles of specific ER Ca 2+ release channels in the ER stress–associated apoptosis pathway remain unknown. Here, we examined the effects of stimulating or inhibiting the ER-resident inositol trisphosphate receptors (IP 3 Rs) and the ryanodine receptors (RyRs) on the induction of β-cell ER stress and apoptosis. RESEARCH DESIGN AND METHODS— Kinetics of β-cell death were tracked by imaging propidium iodide incorporation and caspase-3 activity in real time. ER stress and apoptosis were assessed by Western blot. Mitochondrial membrane potential was monitored by flow cytometry. Cytosolic Ca 2+ was imaged using fura-2, and genetically encoded fluorescence resonance energy transfer (FRET)–based probes were used to measure Ca 2+ in ER and mitochondria. RESULTS— Neither RyR nor IP 3 R inhibition, alone or in combination, caused robust death within 24 h. In contrast, blocking sarco/endoplasmic reticulum ATPase (SERCA) pumps depleted ER Ca 2+ and induced marked phosphorylation of PKR-like ER kinase (PERK) and eukaryotic initiation factor-2α (eIF2α), C/EBP homologous protein (CHOP)–associated ER stress, caspase-3 activation, and death. Notably, ER stress following SERCA inhibition was attenuated by blocking IP 3 Rs and RyRs. Conversely, stimulation of ER Ca 2+ release channels accelerated thapsigargin-induced ER depletion and apoptosis. SERCA block also activated caspase-9 and induced perturbations of the mitochondrial membrane potential, resulting eventually in the loss of mitochondrial polarization. CONCLUSIONS— This study demonstrates that the activity of ER Ca 2+ channels regulates the susceptibility of β-cells to ER stress resulting from impaired SERCA function. Our results also suggest the involvement of mitochondria in β-cell apoptosis associated with dysfunctional β-cell ER Ca 2+ homeostasis and ER stress. Footnotes Published ahead of print at http://diabetes.diabetesjournals.org on 25 November 2008. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C Section 1734 solely to indicate this fact. Accepted November 5, 2008. Received December 14, 2007. DIABETES</description><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology</subject><subject>Caspase 3 - metabolism</subject><subject>Cell Death - drug effects</subject><subject>Cell Line</subject><subject>Cells, Cultured</subject><subject>Endoplasmic Reticulum - drug effects</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Flow Cytometry</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Immunoblotting</subject><subject>Inositol 1,4,5-Trisphosphate Receptors - agonists</subject><subject>Inositol 1,4,5-Trisphosphate Receptors - antagonists &amp; inhibitors</subject><subject>Inositol 1,4,5-Trisphosphate Receptors - physiology</subject><subject>Insulin-Secreting Cells - cytology</subject><subject>Insulin-Secreting Cells - drug effects</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Islet Studies</subject><subject>Kinetics</subject><subject>Macrocyclic Compounds - pharmacology</subject><subject>Male</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Organometallic Compounds - pharmacology</subject><subject>Oxazoles - pharmacology</subject><subject>Propidium - metabolism</subject><subject>Ryanodine - pharmacology</subject><subject>Ryanodine Receptor Calcium Release Channel - physiology</subject><subject>Sarcoplasmic Reticulum Calcium-Transporting ATPases</subject><subject>Thapsigargin - pharmacology</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkdtq3DAQhkVpSbZJLvoCRVeBNrjRwWtZN4Hgbg4QaHES6J3QYRQr-LCx7JZ9rTxIn6l2dmla5kLD6Jt_RvoR-kDJF8a5OHWGiISKjL1BCyq5TDgTP96iBSGUTXUp9tH7GB8JIdkUe2ifSsI5l3KB7suuhog7j6-_8xLr1uFyU-JCsxNcVLptoY44tHjVum5d69gEi0sYgh3rscG3Qw8xvnT9fk4KqGv8FfRQHaJ3XtcRjnbnAbq_WN0VV8nNt8vr4vwmsZznQ5ISb7jQFhjlkjrLrTA0dZR6NqXE2hSo8-D9UpjcWOlSk0stMmNA61ym_ACdbXXXo2nAWWiHXtdq3YdG9xvV6aD-v2lDpR66n4plLM9oNgkc7wT67mmEOKgmRDu9Q7fQjVFlWb5cinwGP21B23cx9uD_DqFEzSao2QQ1mzCxH__d6pXc_foEfN4CVXiofoUelAvawADxNVnmiqmUMf4HWQaSLg</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Luciani, Dan S</creator><creator>Gwiazda, Kamila S</creator><creator>Yang, Ting-Lin B</creator><creator>Kalynyak, Tatyana B</creator><creator>Bychkivska, Yaryna</creator><creator>Frey, Matthew H Z</creator><creator>Jeffrey, Kristin D</creator><creator>Sampaio, Arthur V</creator><creator>Underhill, T Michael</creator><creator>Johnson, James D</creator><general>American Diabetes Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090201</creationdate><title>Roles of IP3R and RyR Ca2+ Channels in Endoplasmic Reticulum Stress and β-Cell Death</title><author>Luciani, Dan S ; Gwiazda, Kamila S ; Yang, Ting-Lin B ; Kalynyak, Tatyana B ; Bychkivska, Yaryna ; Frey, Matthew H Z ; Jeffrey, Kristin D ; Sampaio, Arthur V ; Underhill, T Michael ; Johnson, James D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-40fb37ace21391dc3c7b14d11f23c70cc4e1dfeff57b8bc9d4b89a76bbeaa8943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology</topic><topic>Caspase 3 - metabolism</topic><topic>Cell Death - drug effects</topic><topic>Cell Line</topic><topic>Cells, Cultured</topic><topic>Endoplasmic Reticulum - drug effects</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Flow Cytometry</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Immunoblotting</topic><topic>Inositol 1,4,5-Trisphosphate Receptors - agonists</topic><topic>Inositol 1,4,5-Trisphosphate Receptors - antagonists &amp; inhibitors</topic><topic>Inositol 1,4,5-Trisphosphate Receptors - physiology</topic><topic>Insulin-Secreting Cells - cytology</topic><topic>Insulin-Secreting Cells - drug effects</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Islet Studies</topic><topic>Kinetics</topic><topic>Macrocyclic Compounds - pharmacology</topic><topic>Male</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Organometallic Compounds - pharmacology</topic><topic>Oxazoles - pharmacology</topic><topic>Propidium - metabolism</topic><topic>Ryanodine - pharmacology</topic><topic>Ryanodine Receptor Calcium Release Channel - physiology</topic><topic>Sarcoplasmic Reticulum Calcium-Transporting ATPases</topic><topic>Thapsigargin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luciani, Dan S</creatorcontrib><creatorcontrib>Gwiazda, Kamila S</creatorcontrib><creatorcontrib>Yang, Ting-Lin B</creatorcontrib><creatorcontrib>Kalynyak, Tatyana B</creatorcontrib><creatorcontrib>Bychkivska, Yaryna</creatorcontrib><creatorcontrib>Frey, Matthew H Z</creatorcontrib><creatorcontrib>Jeffrey, Kristin D</creatorcontrib><creatorcontrib>Sampaio, Arthur V</creatorcontrib><creatorcontrib>Underhill, T Michael</creatorcontrib><creatorcontrib>Johnson, James D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luciani, Dan S</au><au>Gwiazda, Kamila S</au><au>Yang, Ting-Lin B</au><au>Kalynyak, Tatyana B</au><au>Bychkivska, Yaryna</au><au>Frey, Matthew H Z</au><au>Jeffrey, Kristin D</au><au>Sampaio, Arthur V</au><au>Underhill, T Michael</au><au>Johnson, James D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roles of IP3R and RyR Ca2+ Channels in Endoplasmic Reticulum Stress and β-Cell Death</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>58</volume><issue>2</issue><spage>422</spage><epage>432</epage><pages>422-432</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>Roles of IP 3 R and RyR Ca 2+ Channels in Endoplasmic Reticulum Stress and β-Cell Death Dan S. Luciani , Kamila S. Gwiazda , Ting-Lin B. Yang , Tatyana B. Kalynyak , Yaryna Bychkivska , Matthew H.Z. Frey , Kristin D. Jeffrey , Arthur V. Sampaio , T. Michael Underhill and James D. Johnson From the Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Comlumbia, Canada Corresponding author: James D. Johnson, jimjohn{at}interchange.ubc.ca Abstract OBJECTIVE— Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of diabetes, but the roles of specific ER Ca 2+ release channels in the ER stress–associated apoptosis pathway remain unknown. Here, we examined the effects of stimulating or inhibiting the ER-resident inositol trisphosphate receptors (IP 3 Rs) and the ryanodine receptors (RyRs) on the induction of β-cell ER stress and apoptosis. RESEARCH DESIGN AND METHODS— Kinetics of β-cell death were tracked by imaging propidium iodide incorporation and caspase-3 activity in real time. ER stress and apoptosis were assessed by Western blot. Mitochondrial membrane potential was monitored by flow cytometry. Cytosolic Ca 2+ was imaged using fura-2, and genetically encoded fluorescence resonance energy transfer (FRET)–based probes were used to measure Ca 2+ in ER and mitochondria. RESULTS— Neither RyR nor IP 3 R inhibition, alone or in combination, caused robust death within 24 h. In contrast, blocking sarco/endoplasmic reticulum ATPase (SERCA) pumps depleted ER Ca 2+ and induced marked phosphorylation of PKR-like ER kinase (PERK) and eukaryotic initiation factor-2α (eIF2α), C/EBP homologous protein (CHOP)–associated ER stress, caspase-3 activation, and death. Notably, ER stress following SERCA inhibition was attenuated by blocking IP 3 Rs and RyRs. Conversely, stimulation of ER Ca 2+ release channels accelerated thapsigargin-induced ER depletion and apoptosis. SERCA block also activated caspase-9 and induced perturbations of the mitochondrial membrane potential, resulting eventually in the loss of mitochondrial polarization. CONCLUSIONS— This study demonstrates that the activity of ER Ca 2+ channels regulates the susceptibility of β-cells to ER stress resulting from impaired SERCA function. Our results also suggest the involvement of mitochondria in β-cell apoptosis associated with dysfunctional β-cell ER Ca 2+ homeostasis and ER stress. Footnotes Published ahead of print at http://diabetes.diabetesjournals.org on 25 November 2008. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C Section 1734 solely to indicate this fact. Accepted November 5, 2008. Received December 14, 2007. DIABETES</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>19033399</pmid><doi>10.2337/db07-1762</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2009-02, Vol.58 (2), p.422-432
issn 0012-1797
1939-327X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2628616
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Calcium - metabolism
Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology
Caspase 3 - metabolism
Cell Death - drug effects
Cell Line
Cells, Cultured
Endoplasmic Reticulum - drug effects
Endoplasmic Reticulum - metabolism
Flow Cytometry
Fluorescence Resonance Energy Transfer
Immunoblotting
Inositol 1,4,5-Trisphosphate Receptors - agonists
Inositol 1,4,5-Trisphosphate Receptors - antagonists & inhibitors
Inositol 1,4,5-Trisphosphate Receptors - physiology
Insulin-Secreting Cells - cytology
Insulin-Secreting Cells - drug effects
Insulin-Secreting Cells - metabolism
Islet Studies
Kinetics
Macrocyclic Compounds - pharmacology
Male
Membrane Potential, Mitochondrial - drug effects
Mice
Mice, Inbred C57BL
Organometallic Compounds - pharmacology
Oxazoles - pharmacology
Propidium - metabolism
Ryanodine - pharmacology
Ryanodine Receptor Calcium Release Channel - physiology
Sarcoplasmic Reticulum Calcium-Transporting ATPases
Thapsigargin - pharmacology
title Roles of IP3R and RyR Ca2+ Channels in Endoplasmic Reticulum Stress and β-Cell Death
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roles%20of%20IP3R%20and%20RyR%20Ca2+%20Channels%20in%20Endoplasmic%20Reticulum%20Stress%20and%20%CE%B2-Cell%20Death&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=Luciani,%20Dan%20S&rft.date=2009-02-01&rft.volume=58&rft.issue=2&rft.spage=422&rft.epage=432&rft.pages=422-432&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db07-1762&rft_dat=%3Cproquest_pubme%3E66855786%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66855786&rft_id=info:pmid/19033399&rfr_iscdi=true