In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos

Real-time study of the transport and biocompatibility of nanomaterials in early embryonic development at single-nanoparticle resolution can offer new knowledge about the delivery and effects of nanomaterials in vivo and provide new insights into molecular transport mechanisms in developing embryos....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2007-09, Vol.1 (2), p.133-143
Hauptverfasser: Lee, Kerry J, Nallathamby, Prakash D, Browning, Lauren M, Osgood, Christopher J, Xu, Xiao-Hong Nancy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 2
container_start_page 133
container_title ACS nano
container_volume 1
creator Lee, Kerry J
Nallathamby, Prakash D
Browning, Lauren M
Osgood, Christopher J
Xu, Xiao-Hong Nancy
description Real-time study of the transport and biocompatibility of nanomaterials in early embryonic development at single-nanoparticle resolution can offer new knowledge about the delivery and effects of nanomaterials in vivo and provide new insights into molecular transport mechanisms in developing embryos. In this study, we directly characterized the transport of single silver nanoparticles into an in vivo model system (zebrafish embryos) and investigated their effects on early embryonic development at single-nanoparticle resolution in real time. We designed highly purified and stable (not aggregated and no photodecomposition) nanoparticles and developed single-nanoparticle optics and in vivo assays to enable the study. We found that single Ag nanoparticles (5–46 nm) are transported into and out of embryos through chorion pore canals (CPCs) and exhibit Brownian diffusion (not active transport), with the diffusion coefficient inside the chorionic space (3 × 10−9 cm2/s) ∼26 times lower than that in egg water (7.7 × 10−8 cm2/s). In contrast, nanoparticles were trapped inside CPCs and the inner mass of the embryos, showing restricted diffusion. Individual Ag nanoparticles were observed inside embryos at each developmental stage and in normally developed, deformed, and dead zebrafish, showing that the biocompatibility and toxicity of Ag nanoparticles and types of abnormalities observed in zebrafish are highly dependent on the dose of Ag nanoparticles, with a critical concentration of 0.19 nM. Rates of passive diffusion and accumulation of nanoparticles in embryos are likely responsible for the dose-dependent abnormalities. Unlike other chemicals, single nanoparticles can be directly imaged inside developing embryos at nanometer spatial resolution, offering new opportunities to unravel the related pathways that lead to the abnormalities.
doi_str_mv 10.1021/nn700048y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2613370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20620287</sourcerecordid><originalsourceid>FETCH-LOGICAL-a500t-12cc3c871771f55863e56ac070c04e2a4ca861309a2f7e17e245530aa9f55ba53</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7oce_AOSi4KH0Up60um5CLqOOrDowVXES6jOVs9mSSdt0jPQ--vNMMOo4MFTFdSTh5e8jD0R8FKAFK9C0AAwb6Z77FQsqnoGTf39_nFX4oSd5XwLoHSj64fsRCyElFrLU3a3Cvyb20a-6nHtwprHjl8lDHmIaeQYrvlbF23sBxxd67wbpx3xpZCeyvBbSvwThjhgGp31lLkLfInJT_wdbcnHoacw7t78oDZh5_INX_ZtmmJ-xB506DM9Psxz9vX98uri4-zy84fVxZvLGSqAcSaktZVttNBadEo1dUWqRgsaLMxJ4txiU4sKFig7TUKTnCtVAeKi0C2q6py93nuHTdvTtS15EnozJNdjmkxEZ_6-BHdj1nFrZNFWGorg-UGQ4s8N5dH0LlvyHgPFTTYaRNX8DyihliAbXcAXe9CmmHOi7phGgNlVao6VFvbpn_F_k4cOC_BsD6DN5jZuUii_-Q_RL2VHqjY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20620287</pqid></control><display><type>article</type><title>In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos</title><source>ACS Publications</source><source>MEDLINE</source><creator>Lee, Kerry J ; Nallathamby, Prakash D ; Browning, Lauren M ; Osgood, Christopher J ; Xu, Xiao-Hong Nancy</creator><creatorcontrib>Lee, Kerry J ; Nallathamby, Prakash D ; Browning, Lauren M ; Osgood, Christopher J ; Xu, Xiao-Hong Nancy</creatorcontrib><description>Real-time study of the transport and biocompatibility of nanomaterials in early embryonic development at single-nanoparticle resolution can offer new knowledge about the delivery and effects of nanomaterials in vivo and provide new insights into molecular transport mechanisms in developing embryos. In this study, we directly characterized the transport of single silver nanoparticles into an in vivo model system (zebrafish embryos) and investigated their effects on early embryonic development at single-nanoparticle resolution in real time. We designed highly purified and stable (not aggregated and no photodecomposition) nanoparticles and developed single-nanoparticle optics and in vivo assays to enable the study. We found that single Ag nanoparticles (5–46 nm) are transported into and out of embryos through chorion pore canals (CPCs) and exhibit Brownian diffusion (not active transport), with the diffusion coefficient inside the chorionic space (3 × 10−9 cm2/s) ∼26 times lower than that in egg water (7.7 × 10−8 cm2/s). In contrast, nanoparticles were trapped inside CPCs and the inner mass of the embryos, showing restricted diffusion. Individual Ag nanoparticles were observed inside embryos at each developmental stage and in normally developed, deformed, and dead zebrafish, showing that the biocompatibility and toxicity of Ag nanoparticles and types of abnormalities observed in zebrafish are highly dependent on the dose of Ag nanoparticles, with a critical concentration of 0.19 nM. Rates of passive diffusion and accumulation of nanoparticles in embryos are likely responsible for the dose-dependent abnormalities. Unlike other chemicals, single nanoparticles can be directly imaged inside developing embryos at nanometer spatial resolution, offering new opportunities to unravel the related pathways that lead to the abnormalities.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn700048y</identifier><identifier>PMID: 19122772</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Biological Transport, Active ; Chorion - physiology ; Danio rerio ; Embryo, Nonmammalian - physiology ; Embryo, Nonmammalian - ultrastructure ; Metal Nanoparticles ; Silver - chemistry ; Zebrafish - embryology ; Zebrafish - physiology</subject><ispartof>ACS nano, 2007-09, Vol.1 (2), p.133-143</ispartof><rights>Copyright © 2007 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a500t-12cc3c871771f55863e56ac070c04e2a4ca861309a2f7e17e245530aa9f55ba53</citedby><cites>FETCH-LOGICAL-a500t-12cc3c871771f55863e56ac070c04e2a4ca861309a2f7e17e245530aa9f55ba53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn700048y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn700048y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19122772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Kerry J</creatorcontrib><creatorcontrib>Nallathamby, Prakash D</creatorcontrib><creatorcontrib>Browning, Lauren M</creatorcontrib><creatorcontrib>Osgood, Christopher J</creatorcontrib><creatorcontrib>Xu, Xiao-Hong Nancy</creatorcontrib><title>In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Real-time study of the transport and biocompatibility of nanomaterials in early embryonic development at single-nanoparticle resolution can offer new knowledge about the delivery and effects of nanomaterials in vivo and provide new insights into molecular transport mechanisms in developing embryos. In this study, we directly characterized the transport of single silver nanoparticles into an in vivo model system (zebrafish embryos) and investigated their effects on early embryonic development at single-nanoparticle resolution in real time. We designed highly purified and stable (not aggregated and no photodecomposition) nanoparticles and developed single-nanoparticle optics and in vivo assays to enable the study. We found that single Ag nanoparticles (5–46 nm) are transported into and out of embryos through chorion pore canals (CPCs) and exhibit Brownian diffusion (not active transport), with the diffusion coefficient inside the chorionic space (3 × 10−9 cm2/s) ∼26 times lower than that in egg water (7.7 × 10−8 cm2/s). In contrast, nanoparticles were trapped inside CPCs and the inner mass of the embryos, showing restricted diffusion. Individual Ag nanoparticles were observed inside embryos at each developmental stage and in normally developed, deformed, and dead zebrafish, showing that the biocompatibility and toxicity of Ag nanoparticles and types of abnormalities observed in zebrafish are highly dependent on the dose of Ag nanoparticles, with a critical concentration of 0.19 nM. Rates of passive diffusion and accumulation of nanoparticles in embryos are likely responsible for the dose-dependent abnormalities. Unlike other chemicals, single nanoparticles can be directly imaged inside developing embryos at nanometer spatial resolution, offering new opportunities to unravel the related pathways that lead to the abnormalities.</description><subject>Animals</subject><subject>Biological Transport, Active</subject><subject>Chorion - physiology</subject><subject>Danio rerio</subject><subject>Embryo, Nonmammalian - physiology</subject><subject>Embryo, Nonmammalian - ultrastructure</subject><subject>Metal Nanoparticles</subject><subject>Silver - chemistry</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish - physiology</subject><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2LFDEQhoMo7oce_AOSi4KH0Up60um5CLqOOrDowVXES6jOVs9mSSdt0jPQ--vNMMOo4MFTFdSTh5e8jD0R8FKAFK9C0AAwb6Z77FQsqnoGTf39_nFX4oSd5XwLoHSj64fsRCyElFrLU3a3Cvyb20a-6nHtwprHjl8lDHmIaeQYrvlbF23sBxxd67wbpx3xpZCeyvBbSvwThjhgGp31lLkLfInJT_wdbcnHoacw7t78oDZh5_INX_ZtmmJ-xB506DM9Psxz9vX98uri4-zy84fVxZvLGSqAcSaktZVttNBadEo1dUWqRgsaLMxJ4txiU4sKFig7TUKTnCtVAeKi0C2q6py93nuHTdvTtS15EnozJNdjmkxEZ_6-BHdj1nFrZNFWGorg-UGQ4s8N5dH0LlvyHgPFTTYaRNX8DyihliAbXcAXe9CmmHOi7phGgNlVao6VFvbpn_F_k4cOC_BsD6DN5jZuUii_-Q_RL2VHqjY</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Lee, Kerry J</creator><creator>Nallathamby, Prakash D</creator><creator>Browning, Lauren M</creator><creator>Osgood, Christopher J</creator><creator>Xu, Xiao-Hong Nancy</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070901</creationdate><title>In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos</title><author>Lee, Kerry J ; Nallathamby, Prakash D ; Browning, Lauren M ; Osgood, Christopher J ; Xu, Xiao-Hong Nancy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a500t-12cc3c871771f55863e56ac070c04e2a4ca861309a2f7e17e245530aa9f55ba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biological Transport, Active</topic><topic>Chorion - physiology</topic><topic>Danio rerio</topic><topic>Embryo, Nonmammalian - physiology</topic><topic>Embryo, Nonmammalian - ultrastructure</topic><topic>Metal Nanoparticles</topic><topic>Silver - chemistry</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kerry J</creatorcontrib><creatorcontrib>Nallathamby, Prakash D</creatorcontrib><creatorcontrib>Browning, Lauren M</creatorcontrib><creatorcontrib>Osgood, Christopher J</creatorcontrib><creatorcontrib>Xu, Xiao-Hong Nancy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kerry J</au><au>Nallathamby, Prakash D</au><au>Browning, Lauren M</au><au>Osgood, Christopher J</au><au>Xu, Xiao-Hong Nancy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>1</volume><issue>2</issue><spage>133</spage><epage>143</epage><pages>133-143</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Real-time study of the transport and biocompatibility of nanomaterials in early embryonic development at single-nanoparticle resolution can offer new knowledge about the delivery and effects of nanomaterials in vivo and provide new insights into molecular transport mechanisms in developing embryos. In this study, we directly characterized the transport of single silver nanoparticles into an in vivo model system (zebrafish embryos) and investigated their effects on early embryonic development at single-nanoparticle resolution in real time. We designed highly purified and stable (not aggregated and no photodecomposition) nanoparticles and developed single-nanoparticle optics and in vivo assays to enable the study. We found that single Ag nanoparticles (5–46 nm) are transported into and out of embryos through chorion pore canals (CPCs) and exhibit Brownian diffusion (not active transport), with the diffusion coefficient inside the chorionic space (3 × 10−9 cm2/s) ∼26 times lower than that in egg water (7.7 × 10−8 cm2/s). In contrast, nanoparticles were trapped inside CPCs and the inner mass of the embryos, showing restricted diffusion. Individual Ag nanoparticles were observed inside embryos at each developmental stage and in normally developed, deformed, and dead zebrafish, showing that the biocompatibility and toxicity of Ag nanoparticles and types of abnormalities observed in zebrafish are highly dependent on the dose of Ag nanoparticles, with a critical concentration of 0.19 nM. Rates of passive diffusion and accumulation of nanoparticles in embryos are likely responsible for the dose-dependent abnormalities. Unlike other chemicals, single nanoparticles can be directly imaged inside developing embryos at nanometer spatial resolution, offering new opportunities to unravel the related pathways that lead to the abnormalities.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19122772</pmid><doi>10.1021/nn700048y</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2007-09, Vol.1 (2), p.133-143
issn 1936-0851
1936-086X
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2613370
source ACS Publications; MEDLINE
subjects Animals
Biological Transport, Active
Chorion - physiology
Danio rerio
Embryo, Nonmammalian - physiology
Embryo, Nonmammalian - ultrastructure
Metal Nanoparticles
Silver - chemistry
Zebrafish - embryology
Zebrafish - physiology
title In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vivo%20Imaging%20of%20Transport%20and%20Biocompatibility%20of%20Single%20Silver%20Nanoparticles%20in%20Early%20Development%20of%20Zebrafish%20Embryos&rft.jtitle=ACS%20nano&rft.au=Lee,%20Kerry%20J&rft.date=2007-09-01&rft.volume=1&rft.issue=2&rft.spage=133&rft.epage=143&rft.pages=133-143&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn700048y&rft_dat=%3Cproquest_pubme%3E20620287%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20620287&rft_id=info:pmid/19122772&rfr_iscdi=true