In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos
Real-time study of the transport and biocompatibility of nanomaterials in early embryonic development at single-nanoparticle resolution can offer new knowledge about the delivery and effects of nanomaterials in vivo and provide new insights into molecular transport mechanisms in developing embryos....
Gespeichert in:
Veröffentlicht in: | ACS nano 2007-09, Vol.1 (2), p.133-143 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143 |
---|---|
container_issue | 2 |
container_start_page | 133 |
container_title | ACS nano |
container_volume | 1 |
creator | Lee, Kerry J Nallathamby, Prakash D Browning, Lauren M Osgood, Christopher J Xu, Xiao-Hong Nancy |
description | Real-time study of the transport and biocompatibility of nanomaterials in early embryonic development at single-nanoparticle resolution can offer new knowledge about the delivery and effects of nanomaterials in vivo and provide new insights into molecular transport mechanisms in developing embryos. In this study, we directly characterized the transport of single silver nanoparticles into an in vivo model system (zebrafish embryos) and investigated their effects on early embryonic development at single-nanoparticle resolution in real time. We designed highly purified and stable (not aggregated and no photodecomposition) nanoparticles and developed single-nanoparticle optics and in vivo assays to enable the study. We found that single Ag nanoparticles (5–46 nm) are transported into and out of embryos through chorion pore canals (CPCs) and exhibit Brownian diffusion (not active transport), with the diffusion coefficient inside the chorionic space (3 × 10−9 cm2/s) ∼26 times lower than that in egg water (7.7 × 10−8 cm2/s). In contrast, nanoparticles were trapped inside CPCs and the inner mass of the embryos, showing restricted diffusion. Individual Ag nanoparticles were observed inside embryos at each developmental stage and in normally developed, deformed, and dead zebrafish, showing that the biocompatibility and toxicity of Ag nanoparticles and types of abnormalities observed in zebrafish are highly dependent on the dose of Ag nanoparticles, with a critical concentration of 0.19 nM. Rates of passive diffusion and accumulation of nanoparticles in embryos are likely responsible for the dose-dependent abnormalities. Unlike other chemicals, single nanoparticles can be directly imaged inside developing embryos at nanometer spatial resolution, offering new opportunities to unravel the related pathways that lead to the abnormalities. |
doi_str_mv | 10.1021/nn700048y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2613370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20620287</sourcerecordid><originalsourceid>FETCH-LOGICAL-a500t-12cc3c871771f55863e56ac070c04e2a4ca861309a2f7e17e245530aa9f55ba53</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7oce_AOSi4KH0Up60um5CLqOOrDowVXES6jOVs9mSSdt0jPQ--vNMMOo4MFTFdSTh5e8jD0R8FKAFK9C0AAwb6Z77FQsqnoGTf39_nFX4oSd5XwLoHSj64fsRCyElFrLU3a3Cvyb20a-6nHtwprHjl8lDHmIaeQYrvlbF23sBxxd67wbpx3xpZCeyvBbSvwThjhgGp31lLkLfInJT_wdbcnHoacw7t78oDZh5_INX_ZtmmJ-xB506DM9Psxz9vX98uri4-zy84fVxZvLGSqAcSaktZVttNBadEo1dUWqRgsaLMxJ4txiU4sKFig7TUKTnCtVAeKi0C2q6py93nuHTdvTtS15EnozJNdjmkxEZ_6-BHdj1nFrZNFWGorg-UGQ4s8N5dH0LlvyHgPFTTYaRNX8DyihliAbXcAXe9CmmHOi7phGgNlVao6VFvbpn_F_k4cOC_BsD6DN5jZuUii_-Q_RL2VHqjY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20620287</pqid></control><display><type>article</type><title>In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos</title><source>ACS Publications</source><source>MEDLINE</source><creator>Lee, Kerry J ; Nallathamby, Prakash D ; Browning, Lauren M ; Osgood, Christopher J ; Xu, Xiao-Hong Nancy</creator><creatorcontrib>Lee, Kerry J ; Nallathamby, Prakash D ; Browning, Lauren M ; Osgood, Christopher J ; Xu, Xiao-Hong Nancy</creatorcontrib><description>Real-time study of the transport and biocompatibility of nanomaterials in early embryonic development at single-nanoparticle resolution can offer new knowledge about the delivery and effects of nanomaterials in vivo and provide new insights into molecular transport mechanisms in developing embryos. In this study, we directly characterized the transport of single silver nanoparticles into an in vivo model system (zebrafish embryos) and investigated their effects on early embryonic development at single-nanoparticle resolution in real time. We designed highly purified and stable (not aggregated and no photodecomposition) nanoparticles and developed single-nanoparticle optics and in vivo assays to enable the study. We found that single Ag nanoparticles (5–46 nm) are transported into and out of embryos through chorion pore canals (CPCs) and exhibit Brownian diffusion (not active transport), with the diffusion coefficient inside the chorionic space (3 × 10−9 cm2/s) ∼26 times lower than that in egg water (7.7 × 10−8 cm2/s). In contrast, nanoparticles were trapped inside CPCs and the inner mass of the embryos, showing restricted diffusion. Individual Ag nanoparticles were observed inside embryos at each developmental stage and in normally developed, deformed, and dead zebrafish, showing that the biocompatibility and toxicity of Ag nanoparticles and types of abnormalities observed in zebrafish are highly dependent on the dose of Ag nanoparticles, with a critical concentration of 0.19 nM. Rates of passive diffusion and accumulation of nanoparticles in embryos are likely responsible for the dose-dependent abnormalities. Unlike other chemicals, single nanoparticles can be directly imaged inside developing embryos at nanometer spatial resolution, offering new opportunities to unravel the related pathways that lead to the abnormalities.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn700048y</identifier><identifier>PMID: 19122772</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Biological Transport, Active ; Chorion - physiology ; Danio rerio ; Embryo, Nonmammalian - physiology ; Embryo, Nonmammalian - ultrastructure ; Metal Nanoparticles ; Silver - chemistry ; Zebrafish - embryology ; Zebrafish - physiology</subject><ispartof>ACS nano, 2007-09, Vol.1 (2), p.133-143</ispartof><rights>Copyright © 2007 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a500t-12cc3c871771f55863e56ac070c04e2a4ca861309a2f7e17e245530aa9f55ba53</citedby><cites>FETCH-LOGICAL-a500t-12cc3c871771f55863e56ac070c04e2a4ca861309a2f7e17e245530aa9f55ba53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn700048y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn700048y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19122772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Kerry J</creatorcontrib><creatorcontrib>Nallathamby, Prakash D</creatorcontrib><creatorcontrib>Browning, Lauren M</creatorcontrib><creatorcontrib>Osgood, Christopher J</creatorcontrib><creatorcontrib>Xu, Xiao-Hong Nancy</creatorcontrib><title>In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Real-time study of the transport and biocompatibility of nanomaterials in early embryonic development at single-nanoparticle resolution can offer new knowledge about the delivery and effects of nanomaterials in vivo and provide new insights into molecular transport mechanisms in developing embryos. In this study, we directly characterized the transport of single silver nanoparticles into an in vivo model system (zebrafish embryos) and investigated their effects on early embryonic development at single-nanoparticle resolution in real time. We designed highly purified and stable (not aggregated and no photodecomposition) nanoparticles and developed single-nanoparticle optics and in vivo assays to enable the study. We found that single Ag nanoparticles (5–46 nm) are transported into and out of embryos through chorion pore canals (CPCs) and exhibit Brownian diffusion (not active transport), with the diffusion coefficient inside the chorionic space (3 × 10−9 cm2/s) ∼26 times lower than that in egg water (7.7 × 10−8 cm2/s). In contrast, nanoparticles were trapped inside CPCs and the inner mass of the embryos, showing restricted diffusion. Individual Ag nanoparticles were observed inside embryos at each developmental stage and in normally developed, deformed, and dead zebrafish, showing that the biocompatibility and toxicity of Ag nanoparticles and types of abnormalities observed in zebrafish are highly dependent on the dose of Ag nanoparticles, with a critical concentration of 0.19 nM. Rates of passive diffusion and accumulation of nanoparticles in embryos are likely responsible for the dose-dependent abnormalities. Unlike other chemicals, single nanoparticles can be directly imaged inside developing embryos at nanometer spatial resolution, offering new opportunities to unravel the related pathways that lead to the abnormalities.</description><subject>Animals</subject><subject>Biological Transport, Active</subject><subject>Chorion - physiology</subject><subject>Danio rerio</subject><subject>Embryo, Nonmammalian - physiology</subject><subject>Embryo, Nonmammalian - ultrastructure</subject><subject>Metal Nanoparticles</subject><subject>Silver - chemistry</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish - physiology</subject><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2LFDEQhoMo7oce_AOSi4KH0Up60um5CLqOOrDowVXES6jOVs9mSSdt0jPQ--vNMMOo4MFTFdSTh5e8jD0R8FKAFK9C0AAwb6Z77FQsqnoGTf39_nFX4oSd5XwLoHSj64fsRCyElFrLU3a3Cvyb20a-6nHtwprHjl8lDHmIaeQYrvlbF23sBxxd67wbpx3xpZCeyvBbSvwThjhgGp31lLkLfInJT_wdbcnHoacw7t78oDZh5_INX_ZtmmJ-xB506DM9Psxz9vX98uri4-zy84fVxZvLGSqAcSaktZVttNBadEo1dUWqRgsaLMxJ4txiU4sKFig7TUKTnCtVAeKi0C2q6py93nuHTdvTtS15EnozJNdjmkxEZ_6-BHdj1nFrZNFWGorg-UGQ4s8N5dH0LlvyHgPFTTYaRNX8DyihliAbXcAXe9CmmHOi7phGgNlVao6VFvbpn_F_k4cOC_BsD6DN5jZuUii_-Q_RL2VHqjY</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Lee, Kerry J</creator><creator>Nallathamby, Prakash D</creator><creator>Browning, Lauren M</creator><creator>Osgood, Christopher J</creator><creator>Xu, Xiao-Hong Nancy</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070901</creationdate><title>In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos</title><author>Lee, Kerry J ; Nallathamby, Prakash D ; Browning, Lauren M ; Osgood, Christopher J ; Xu, Xiao-Hong Nancy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a500t-12cc3c871771f55863e56ac070c04e2a4ca861309a2f7e17e245530aa9f55ba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biological Transport, Active</topic><topic>Chorion - physiology</topic><topic>Danio rerio</topic><topic>Embryo, Nonmammalian - physiology</topic><topic>Embryo, Nonmammalian - ultrastructure</topic><topic>Metal Nanoparticles</topic><topic>Silver - chemistry</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kerry J</creatorcontrib><creatorcontrib>Nallathamby, Prakash D</creatorcontrib><creatorcontrib>Browning, Lauren M</creatorcontrib><creatorcontrib>Osgood, Christopher J</creatorcontrib><creatorcontrib>Xu, Xiao-Hong Nancy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kerry J</au><au>Nallathamby, Prakash D</au><au>Browning, Lauren M</au><au>Osgood, Christopher J</au><au>Xu, Xiao-Hong Nancy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>1</volume><issue>2</issue><spage>133</spage><epage>143</epage><pages>133-143</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Real-time study of the transport and biocompatibility of nanomaterials in early embryonic development at single-nanoparticle resolution can offer new knowledge about the delivery and effects of nanomaterials in vivo and provide new insights into molecular transport mechanisms in developing embryos. In this study, we directly characterized the transport of single silver nanoparticles into an in vivo model system (zebrafish embryos) and investigated their effects on early embryonic development at single-nanoparticle resolution in real time. We designed highly purified and stable (not aggregated and no photodecomposition) nanoparticles and developed single-nanoparticle optics and in vivo assays to enable the study. We found that single Ag nanoparticles (5–46 nm) are transported into and out of embryos through chorion pore canals (CPCs) and exhibit Brownian diffusion (not active transport), with the diffusion coefficient inside the chorionic space (3 × 10−9 cm2/s) ∼26 times lower than that in egg water (7.7 × 10−8 cm2/s). In contrast, nanoparticles were trapped inside CPCs and the inner mass of the embryos, showing restricted diffusion. Individual Ag nanoparticles were observed inside embryos at each developmental stage and in normally developed, deformed, and dead zebrafish, showing that the biocompatibility and toxicity of Ag nanoparticles and types of abnormalities observed in zebrafish are highly dependent on the dose of Ag nanoparticles, with a critical concentration of 0.19 nM. Rates of passive diffusion and accumulation of nanoparticles in embryos are likely responsible for the dose-dependent abnormalities. Unlike other chemicals, single nanoparticles can be directly imaged inside developing embryos at nanometer spatial resolution, offering new opportunities to unravel the related pathways that lead to the abnormalities.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19122772</pmid><doi>10.1021/nn700048y</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2007-09, Vol.1 (2), p.133-143 |
issn | 1936-0851 1936-086X 1936-086X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2613370 |
source | ACS Publications; MEDLINE |
subjects | Animals Biological Transport, Active Chorion - physiology Danio rerio Embryo, Nonmammalian - physiology Embryo, Nonmammalian - ultrastructure Metal Nanoparticles Silver - chemistry Zebrafish - embryology Zebrafish - physiology |
title | In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vivo%20Imaging%20of%20Transport%20and%20Biocompatibility%20of%20Single%20Silver%20Nanoparticles%20in%20Early%20Development%20of%20Zebrafish%20Embryos&rft.jtitle=ACS%20nano&rft.au=Lee,%20Kerry%20J&rft.date=2007-09-01&rft.volume=1&rft.issue=2&rft.spage=133&rft.epage=143&rft.pages=133-143&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn700048y&rft_dat=%3Cproquest_pubme%3E20620287%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20620287&rft_id=info:pmid/19122772&rfr_iscdi=true |