Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations

We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2009-01, Vol.75 (1), p.193-202
Hauptverfasser: Wollenberg, M.S, Ruby, E.G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue 1
container_start_page 193
container_title Applied and Environmental Microbiology
container_volume 75
creator Wollenberg, M.S
Ruby, E.G
description We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory.
doi_str_mv 10.1128/AEM.01792-08
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2612210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66780357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-57ecf403dd8f07997a8565976341456b53620a602d227fcf8ba38ec48600fa3b3</originalsourceid><addsrcrecordid>eNqF0c1v0zAYB-AIgVgZ3DiDhQQCiYzXdvx1QZqmwpCKitSNq-WmduMpiTs7WbXD_ndcWm3AhZMPfvR-_YriJYYTjIn8dDr9fgJYKFKCfFRMMChZMkr542ICoFRJSAVHxbOUrgCgAi6fFkdYKiWAVJPi7kfYjK0ZfOjRYohjPYzRouDQT7-MPiDnU93Y6NHWD43v0dBYNPPrZkDzuDZ92tHpuIm3XW9QqkMbNjahxfXoV8jF0KGLbUBz04zo_bnZGu8_oIeO6XnxxJk22ReH97i4_DK9ODsvZ_Ov385OZ2XNsBpKJmztKqCrlXQg8uhGMs6U4LTCFeNLRjkBw4GsCBGudnJpqLR1JTmAM3RJj4vP-7qbcdnZVW37IZpWb6LvTLzVwXj990_vG70ON5pwTAiGXODdoUAM16NNg-7yYWzbmt6GMWnOhQTKxH8hwQwwpzTDN__AqzDGPl9BE2CK56Yyo497VMeQUrTufmQMepe-zunr3-lr2PFXf675gA9xZ_D2AEyqTeui6Wuf7h3BWGDFd-uivWty1FsfrTap08Z2WjCNNVa7-V_viTNBm3XMZS4XBDAFzAQToqK_AOzny-8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205961038</pqid></control><display><type>article</type><title>Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wollenberg, M.S ; Ruby, E.G</creator><creatorcontrib>Wollenberg, M.S ; Ruby, E.G</creatorcontrib><description>We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.01792-08</identifier><identifier>PMID: 18997024</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Aliivibrio fischeri - classification ; Aliivibrio fischeri - genetics ; Aliivibrio fischeri - isolation &amp; purification ; Aliivibrio fischeri - physiology ; Animal populations ; Animal Structures - microbiology ; Animals ; Bacterial Typing Techniques ; Biodiversity ; Biological and medical sciences ; Cluster Analysis ; Decapodiformes - microbiology ; DNA Fingerprinting ; DNA, Bacterial - genetics ; Euprymna scolopes ; Fundamental and applied biological sciences. Psychology ; Genetic diversity ; Genotype ; Hawaii ; Invertebrate Microbiology ; Microbiology ; Models, Theoretical ; Mollusks ; Phenotype ; Statistical analysis ; Symbiosis</subject><ispartof>Applied and Environmental Microbiology, 2009-01, Vol.75 (1), p.193-202</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jan 2009</rights><rights>Copyright © 2009, American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-57ecf403dd8f07997a8565976341456b53620a602d227fcf8ba38ec48600fa3b3</citedby><cites>FETCH-LOGICAL-c519t-57ecf403dd8f07997a8565976341456b53620a602d227fcf8ba38ec48600fa3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612210/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612210/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3174,3175,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21171960$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18997024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wollenberg, M.S</creatorcontrib><creatorcontrib>Ruby, E.G</creatorcontrib><title>Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory.</description><subject>Aliivibrio fischeri - classification</subject><subject>Aliivibrio fischeri - genetics</subject><subject>Aliivibrio fischeri - isolation &amp; purification</subject><subject>Aliivibrio fischeri - physiology</subject><subject>Animal populations</subject><subject>Animal Structures - microbiology</subject><subject>Animals</subject><subject>Bacterial Typing Techniques</subject><subject>Biodiversity</subject><subject>Biological and medical sciences</subject><subject>Cluster Analysis</subject><subject>Decapodiformes - microbiology</subject><subject>DNA Fingerprinting</subject><subject>DNA, Bacterial - genetics</subject><subject>Euprymna scolopes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic diversity</subject><subject>Genotype</subject><subject>Hawaii</subject><subject>Invertebrate Microbiology</subject><subject>Microbiology</subject><subject>Models, Theoretical</subject><subject>Mollusks</subject><subject>Phenotype</subject><subject>Statistical analysis</subject><subject>Symbiosis</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1v0zAYB-AIgVgZ3DiDhQQCiYzXdvx1QZqmwpCKitSNq-WmduMpiTs7WbXD_ndcWm3AhZMPfvR-_YriJYYTjIn8dDr9fgJYKFKCfFRMMChZMkr542ICoFRJSAVHxbOUrgCgAi6fFkdYKiWAVJPi7kfYjK0ZfOjRYohjPYzRouDQT7-MPiDnU93Y6NHWD43v0dBYNPPrZkDzuDZ92tHpuIm3XW9QqkMbNjahxfXoV8jF0KGLbUBz04zo_bnZGu8_oIeO6XnxxJk22ReH97i4_DK9ODsvZ_Ov385OZ2XNsBpKJmztKqCrlXQg8uhGMs6U4LTCFeNLRjkBw4GsCBGudnJpqLR1JTmAM3RJj4vP-7qbcdnZVW37IZpWb6LvTLzVwXj990_vG70ON5pwTAiGXODdoUAM16NNg-7yYWzbmt6GMWnOhQTKxH8hwQwwpzTDN__AqzDGPl9BE2CK56Yyo497VMeQUrTufmQMepe-zunr3-lr2PFXf675gA9xZ_D2AEyqTeui6Wuf7h3BWGDFd-uivWty1FsfrTap08Z2WjCNNVa7-V_viTNBm3XMZS4XBDAFzAQToqK_AOzny-8</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Wollenberg, M.S</creator><creator>Ruby, E.G</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090101</creationdate><title>Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations</title><author>Wollenberg, M.S ; Ruby, E.G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-57ecf403dd8f07997a8565976341456b53620a602d227fcf8ba38ec48600fa3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aliivibrio fischeri - classification</topic><topic>Aliivibrio fischeri - genetics</topic><topic>Aliivibrio fischeri - isolation &amp; purification</topic><topic>Aliivibrio fischeri - physiology</topic><topic>Animal populations</topic><topic>Animal Structures - microbiology</topic><topic>Animals</topic><topic>Bacterial Typing Techniques</topic><topic>Biodiversity</topic><topic>Biological and medical sciences</topic><topic>Cluster Analysis</topic><topic>Decapodiformes - microbiology</topic><topic>DNA Fingerprinting</topic><topic>DNA, Bacterial - genetics</topic><topic>Euprymna scolopes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic diversity</topic><topic>Genotype</topic><topic>Hawaii</topic><topic>Invertebrate Microbiology</topic><topic>Microbiology</topic><topic>Models, Theoretical</topic><topic>Mollusks</topic><topic>Phenotype</topic><topic>Statistical analysis</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wollenberg, M.S</creatorcontrib><creatorcontrib>Ruby, E.G</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wollenberg, M.S</au><au>Ruby, E.G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>75</volume><issue>1</issue><spage>193</spage><epage>202</epage><pages>193-202</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>18997024</pmid><doi>10.1128/AEM.01792-08</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2009-01, Vol.75 (1), p.193-202
issn 0099-2240
1098-5336
1098-6596
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2612210
source American Society for Microbiology; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Aliivibrio fischeri - classification
Aliivibrio fischeri - genetics
Aliivibrio fischeri - isolation & purification
Aliivibrio fischeri - physiology
Animal populations
Animal Structures - microbiology
Animals
Bacterial Typing Techniques
Biodiversity
Biological and medical sciences
Cluster Analysis
Decapodiformes - microbiology
DNA Fingerprinting
DNA, Bacterial - genetics
Euprymna scolopes
Fundamental and applied biological sciences. Psychology
Genetic diversity
Genotype
Hawaii
Invertebrate Microbiology
Microbiology
Models, Theoretical
Mollusks
Phenotype
Statistical analysis
Symbiosis
title Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20Structure%20of%20Vibrio%20fischeri%20within%20the%20Light%20Organs%20of%20Euprymna%20scolopes%20Squid%20from%20Two%20Oahu%20(Hawaii)%20Populations&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Wollenberg,%20M.S&rft.date=2009-01-01&rft.volume=75&rft.issue=1&rft.spage=193&rft.epage=202&rft.pages=193-202&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.01792-08&rft_dat=%3Cproquest_pubme%3E66780357%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205961038&rft_id=info:pmid/18997024&rfr_iscdi=true