Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations
We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilo...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 2009-01, Vol.75 (1), p.193-202 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | 1 |
container_start_page | 193 |
container_title | Applied and Environmental Microbiology |
container_volume | 75 |
creator | Wollenberg, M.S Ruby, E.G |
description | We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory. |
doi_str_mv | 10.1128/AEM.01792-08 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2612210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66780357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-57ecf403dd8f07997a8565976341456b53620a602d227fcf8ba38ec48600fa3b3</originalsourceid><addsrcrecordid>eNqF0c1v0zAYB-AIgVgZ3DiDhQQCiYzXdvx1QZqmwpCKitSNq-WmduMpiTs7WbXD_ndcWm3AhZMPfvR-_YriJYYTjIn8dDr9fgJYKFKCfFRMMChZMkr542ICoFRJSAVHxbOUrgCgAi6fFkdYKiWAVJPi7kfYjK0ZfOjRYohjPYzRouDQT7-MPiDnU93Y6NHWD43v0dBYNPPrZkDzuDZ92tHpuIm3XW9QqkMbNjahxfXoV8jF0KGLbUBz04zo_bnZGu8_oIeO6XnxxJk22ReH97i4_DK9ODsvZ_Ov385OZ2XNsBpKJmztKqCrlXQg8uhGMs6U4LTCFeNLRjkBw4GsCBGudnJpqLR1JTmAM3RJj4vP-7qbcdnZVW37IZpWb6LvTLzVwXj990_vG70ON5pwTAiGXODdoUAM16NNg-7yYWzbmt6GMWnOhQTKxH8hwQwwpzTDN__AqzDGPl9BE2CK56Yyo497VMeQUrTufmQMepe-zunr3-lr2PFXf675gA9xZ_D2AEyqTeui6Wuf7h3BWGDFd-uivWty1FsfrTap08Z2WjCNNVa7-V_viTNBm3XMZS4XBDAFzAQToqK_AOzny-8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205961038</pqid></control><display><type>article</type><title>Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wollenberg, M.S ; Ruby, E.G</creator><creatorcontrib>Wollenberg, M.S ; Ruby, E.G</creatorcontrib><description>We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.01792-08</identifier><identifier>PMID: 18997024</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Aliivibrio fischeri - classification ; Aliivibrio fischeri - genetics ; Aliivibrio fischeri - isolation & purification ; Aliivibrio fischeri - physiology ; Animal populations ; Animal Structures - microbiology ; Animals ; Bacterial Typing Techniques ; Biodiversity ; Biological and medical sciences ; Cluster Analysis ; Decapodiformes - microbiology ; DNA Fingerprinting ; DNA, Bacterial - genetics ; Euprymna scolopes ; Fundamental and applied biological sciences. Psychology ; Genetic diversity ; Genotype ; Hawaii ; Invertebrate Microbiology ; Microbiology ; Models, Theoretical ; Mollusks ; Phenotype ; Statistical analysis ; Symbiosis</subject><ispartof>Applied and Environmental Microbiology, 2009-01, Vol.75 (1), p.193-202</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jan 2009</rights><rights>Copyright © 2009, American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-57ecf403dd8f07997a8565976341456b53620a602d227fcf8ba38ec48600fa3b3</citedby><cites>FETCH-LOGICAL-c519t-57ecf403dd8f07997a8565976341456b53620a602d227fcf8ba38ec48600fa3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612210/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612210/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3174,3175,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21171960$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18997024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wollenberg, M.S</creatorcontrib><creatorcontrib>Ruby, E.G</creatorcontrib><title>Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory.</description><subject>Aliivibrio fischeri - classification</subject><subject>Aliivibrio fischeri - genetics</subject><subject>Aliivibrio fischeri - isolation & purification</subject><subject>Aliivibrio fischeri - physiology</subject><subject>Animal populations</subject><subject>Animal Structures - microbiology</subject><subject>Animals</subject><subject>Bacterial Typing Techniques</subject><subject>Biodiversity</subject><subject>Biological and medical sciences</subject><subject>Cluster Analysis</subject><subject>Decapodiformes - microbiology</subject><subject>DNA Fingerprinting</subject><subject>DNA, Bacterial - genetics</subject><subject>Euprymna scolopes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic diversity</subject><subject>Genotype</subject><subject>Hawaii</subject><subject>Invertebrate Microbiology</subject><subject>Microbiology</subject><subject>Models, Theoretical</subject><subject>Mollusks</subject><subject>Phenotype</subject><subject>Statistical analysis</subject><subject>Symbiosis</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1v0zAYB-AIgVgZ3DiDhQQCiYzXdvx1QZqmwpCKitSNq-WmduMpiTs7WbXD_ndcWm3AhZMPfvR-_YriJYYTjIn8dDr9fgJYKFKCfFRMMChZMkr542ICoFRJSAVHxbOUrgCgAi6fFkdYKiWAVJPi7kfYjK0ZfOjRYohjPYzRouDQT7-MPiDnU93Y6NHWD43v0dBYNPPrZkDzuDZ92tHpuIm3XW9QqkMbNjahxfXoV8jF0KGLbUBz04zo_bnZGu8_oIeO6XnxxJk22ReH97i4_DK9ODsvZ_Ov385OZ2XNsBpKJmztKqCrlXQg8uhGMs6U4LTCFeNLRjkBw4GsCBGudnJpqLR1JTmAM3RJj4vP-7qbcdnZVW37IZpWb6LvTLzVwXj990_vG70ON5pwTAiGXODdoUAM16NNg-7yYWzbmt6GMWnOhQTKxH8hwQwwpzTDN__AqzDGPl9BE2CK56Yyo497VMeQUrTufmQMepe-zunr3-lr2PFXf675gA9xZ_D2AEyqTeui6Wuf7h3BWGDFd-uivWty1FsfrTap08Z2WjCNNVa7-V_viTNBm3XMZS4XBDAFzAQToqK_AOzny-8</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Wollenberg, M.S</creator><creator>Ruby, E.G</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090101</creationdate><title>Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations</title><author>Wollenberg, M.S ; Ruby, E.G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-57ecf403dd8f07997a8565976341456b53620a602d227fcf8ba38ec48600fa3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aliivibrio fischeri - classification</topic><topic>Aliivibrio fischeri - genetics</topic><topic>Aliivibrio fischeri - isolation & purification</topic><topic>Aliivibrio fischeri - physiology</topic><topic>Animal populations</topic><topic>Animal Structures - microbiology</topic><topic>Animals</topic><topic>Bacterial Typing Techniques</topic><topic>Biodiversity</topic><topic>Biological and medical sciences</topic><topic>Cluster Analysis</topic><topic>Decapodiformes - microbiology</topic><topic>DNA Fingerprinting</topic><topic>DNA, Bacterial - genetics</topic><topic>Euprymna scolopes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic diversity</topic><topic>Genotype</topic><topic>Hawaii</topic><topic>Invertebrate Microbiology</topic><topic>Microbiology</topic><topic>Models, Theoretical</topic><topic>Mollusks</topic><topic>Phenotype</topic><topic>Statistical analysis</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wollenberg, M.S</creatorcontrib><creatorcontrib>Ruby, E.G</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wollenberg, M.S</au><au>Ruby, E.G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>75</volume><issue>1</issue><spage>193</spage><epage>202</epage><pages>193-202</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>18997024</pmid><doi>10.1128/AEM.01792-08</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 2009-01, Vol.75 (1), p.193-202 |
issn | 0099-2240 1098-5336 1098-6596 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2612210 |
source | American Society for Microbiology; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Aliivibrio fischeri - classification Aliivibrio fischeri - genetics Aliivibrio fischeri - isolation & purification Aliivibrio fischeri - physiology Animal populations Animal Structures - microbiology Animals Bacterial Typing Techniques Biodiversity Biological and medical sciences Cluster Analysis Decapodiformes - microbiology DNA Fingerprinting DNA, Bacterial - genetics Euprymna scolopes Fundamental and applied biological sciences. Psychology Genetic diversity Genotype Hawaii Invertebrate Microbiology Microbiology Models, Theoretical Mollusks Phenotype Statistical analysis Symbiosis |
title | Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20Structure%20of%20Vibrio%20fischeri%20within%20the%20Light%20Organs%20of%20Euprymna%20scolopes%20Squid%20from%20Two%20Oahu%20(Hawaii)%20Populations&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Wollenberg,%20M.S&rft.date=2009-01-01&rft.volume=75&rft.issue=1&rft.spage=193&rft.epage=202&rft.pages=193-202&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.01792-08&rft_dat=%3Cproquest_pubme%3E66780357%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205961038&rft_id=info:pmid/18997024&rfr_iscdi=true |