Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation
Palmitoylation regulates diverse aspects of neuronal protein trafficking and function. Here a global characterization of rat neural palmitoyl-proteomes identifies most of the known neural palmitoyl proteins—68 in total, plus more than 200 new palmitoyl-protein candidates, with further testing confir...
Gespeichert in:
Veröffentlicht in: | Nature 2008-12, Vol.456 (7224), p.904-909 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 909 |
---|---|
container_issue | 7224 |
container_start_page | 904 |
container_title | Nature |
container_volume | 456 |
creator | Kang, Rujun Wan, Junmei Arstikaitis, Pamela Takahashi, Hideto Huang, Kun Bailey, Aaron O. Thompson, James X. Roth, Amy F. Drisdel, Renaldo C. Mastro, Ryan Green, William N. Yates III, John R. Davis, Nicholas G. El-Husseini, Alaa |
description | Palmitoylation regulates diverse aspects of neuronal protein trafficking and function. Here a global characterization of rat neural palmitoyl-proteomes identifies most of the known neural palmitoyl proteins—68 in total, plus more than 200 new palmitoyl-protein candidates, with further testing confirming palmitoylation for 21 of these candidates. The new palmitoyl proteins include neurotransmitter receptors, transporters, adhesion molecules, scaffolding proteins, as well as SNAREs and other vesicular trafficking proteins. Of particular interest is the finding of palmitoylation for a brain-specific Cdc42 splice variant. The palmitoylated Cdc42 isoform (Cdc42-palm) differs from the canonical, prenylated form (Cdc42-prenyl), both with regard to localization and function: Cdc42-palm concentrates in dendritic spines and has a special role in inducing these post-synaptic structures. Furthermore, assessing palmitoylation dynamics in drug-induced activity models identifies rapidly induced changes for Cdc42 as well as for other synaptic palmitoyl proteins, suggesting that palmitoylation may participate broadly in the activity-driven changes that shape synapse morphology and function.
Neuronal proteins: the palmitoyl-proteome
Palmitoylation, the addition of the lipid palmitate to proteins, plays an important role in modulating neuronal protein trafficking and function. A new proteomics study identifies palmitoylation as a key modifiable signal on many synapse-enriched proteins that contribute to activity-driven changes in synapse morphology and function. A large population of proteins — dubbed the neuronal 'palmitoyl-proteome' — is reversibly palmitoylated in response to neuronal activity. In particular, the study reveals a new, brain-specific isoform of the small GTPase Cdc42, whose unexpected palmitoylation specifically affects dendritic spine morphogenesis in response to neuronal activity.
A proteomics study unveils a large collection of proteins that get reversibly palmitoylated in response to neuronal activity — the neuronal palmitoyl-proteome. In particular, this study focuses on the discovery of a brain-specific isoform of the small GTPase Cdc42, whose unexpected palmitoylation specifically affects dendritic spine morphogenesis in response to neuronal activity. These findings identify palmitoylation as a key modifiable signal on many synapse-enriched proteins that contribute to activity-driven changes in synapse morphology and function. |
doi_str_mv | 10.1038/nature07605 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2610860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A192061315</galeid><sourcerecordid>A192061315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c720t-cc5d8f5cc98d8091a74a4bd78bd31dbd51a69fb9eacc344616dd94cf7e25afef3</originalsourceid><addsrcrecordid>eNqF0s2L1DAUAPAiijuunrzLICiIdk3SJmkuwjD4sbCsoCseQ5q81ixt0k3axfnvzTDDfMiI9JCS_PLykvey7DlGFxgV1XunxikA4gzRB9kMl5zlJav4w2yGEKlyVBXsLHsS4y1CiGJePs7OsECCCMJn2fIapqC6-aC63o5-1eVD8CP43uo4D3APqotzs3IqTcxjGocx_ey0Gq13T7NHTWLwbDueZz8-fbxZfsmvvn6-XC6ucs0JGnOtqakaqrWoTIUEVrxUZW14VZsCm9pQrJhoagFK66IsGWbGiFI3HAhVDTTFefZhE3eY6h6MBjem1OUQbK_CSnpl5fGKs79k6-8lYRhVDKUAr7cBgr-bII6yt1FD1ykHfoqSCYGJ4P-HBBHGq6JM8OVf8NZPwaVXSGZ9B4rXKN-gVnUgrWt8yk634CAl6R00Nk0vsCCI4QLTfdAjrwd7Jw_RxQmUPgOpVCejvjnakMwIv8dWTTHKy-_fju3bf9vFzc_l9Umtg48xQLMrCUZy3aLyoEWTfnFYxb3d9mQCr7ZARa26Jiinbdw5ggRllK7du42Lacm1EPZvf-rcPxCG_XU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204461514</pqid></control><display><type>article</type><title>Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Kang, Rujun ; Wan, Junmei ; Arstikaitis, Pamela ; Takahashi, Hideto ; Huang, Kun ; Bailey, Aaron O. ; Thompson, James X. ; Roth, Amy F. ; Drisdel, Renaldo C. ; Mastro, Ryan ; Green, William N. ; Yates III, John R. ; Davis, Nicholas G. ; El-Husseini, Alaa</creator><creatorcontrib>Kang, Rujun ; Wan, Junmei ; Arstikaitis, Pamela ; Takahashi, Hideto ; Huang, Kun ; Bailey, Aaron O. ; Thompson, James X. ; Roth, Amy F. ; Drisdel, Renaldo C. ; Mastro, Ryan ; Green, William N. ; Yates III, John R. ; Davis, Nicholas G. ; El-Husseini, Alaa</creatorcontrib><description>Palmitoylation regulates diverse aspects of neuronal protein trafficking and function. Here a global characterization of rat neural palmitoyl-proteomes identifies most of the known neural palmitoyl proteins—68 in total, plus more than 200 new palmitoyl-protein candidates, with further testing confirming palmitoylation for 21 of these candidates. The new palmitoyl proteins include neurotransmitter receptors, transporters, adhesion molecules, scaffolding proteins, as well as SNAREs and other vesicular trafficking proteins. Of particular interest is the finding of palmitoylation for a brain-specific Cdc42 splice variant. The palmitoylated Cdc42 isoform (Cdc42-palm) differs from the canonical, prenylated form (Cdc42-prenyl), both with regard to localization and function: Cdc42-palm concentrates in dendritic spines and has a special role in inducing these post-synaptic structures. Furthermore, assessing palmitoylation dynamics in drug-induced activity models identifies rapidly induced changes for Cdc42 as well as for other synaptic palmitoyl proteins, suggesting that palmitoylation may participate broadly in the activity-driven changes that shape synapse morphology and function.
Neuronal proteins: the palmitoyl-proteome
Palmitoylation, the addition of the lipid palmitate to proteins, plays an important role in modulating neuronal protein trafficking and function. A new proteomics study identifies palmitoylation as a key modifiable signal on many synapse-enriched proteins that contribute to activity-driven changes in synapse morphology and function. A large population of proteins — dubbed the neuronal 'palmitoyl-proteome' — is reversibly palmitoylated in response to neuronal activity. In particular, the study reveals a new, brain-specific isoform of the small GTPase Cdc42, whose unexpected palmitoylation specifically affects dendritic spine morphogenesis in response to neuronal activity.
A proteomics study unveils a large collection of proteins that get reversibly palmitoylated in response to neuronal activity — the neuronal palmitoyl-proteome. In particular, this study focuses on the discovery of a brain-specific isoform of the small GTPase Cdc42, whose unexpected palmitoylation specifically affects dendritic spine morphogenesis in response to neuronal activity. These findings identify palmitoylation as a key modifiable signal on many synapse-enriched proteins that contribute to activity-driven changes in synapse morphology and function.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/nature07605</identifier><identifier>PMID: 19092927</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Alternative Splicing - genetics ; Animals ; Biological and medical sciences ; Candidates ; cdc42 GTP-Binding Protein - genetics ; cdc42 GTP-Binding Protein - metabolism ; Cells, Cultured ; Cerebral Cortex - cytology ; Cerebral Cortex - embryology ; Control ; Dendrites - metabolism ; Fatty acids ; Fundamental and applied biological sciences. Psychology ; Health aspects ; Humanities and Social Sciences ; Lipids ; Lipoylation ; Localization ; Metabolism ; Models, Neurological ; Morphology ; multidisciplinary ; Neurons - metabolism ; Organ Specificity ; Palmitoylation ; Protein-protein interactions ; Proteins ; Proteome - metabolism ; Proteomics ; Rats ; Science ; Science (multidisciplinary) ; Synapses - metabolism ; Synthesis ; Vertebrates: nervous system and sense organs</subject><ispartof>Nature, 2008-12, Vol.456 (7224), p.904-909</ispartof><rights>Macmillan Publishers Limited. All rights reserved 2008</rights><rights>2009 INIST-CNRS</rights><rights>COPYRIGHT 2008 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 18-Dec 25, 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c720t-cc5d8f5cc98d8091a74a4bd78bd31dbd51a69fb9eacc344616dd94cf7e25afef3</citedby><cites>FETCH-LOGICAL-c720t-cc5d8f5cc98d8091a74a4bd78bd31dbd51a69fb9eacc344616dd94cf7e25afef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature07605$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature07605$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20956557$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19092927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Rujun</creatorcontrib><creatorcontrib>Wan, Junmei</creatorcontrib><creatorcontrib>Arstikaitis, Pamela</creatorcontrib><creatorcontrib>Takahashi, Hideto</creatorcontrib><creatorcontrib>Huang, Kun</creatorcontrib><creatorcontrib>Bailey, Aaron O.</creatorcontrib><creatorcontrib>Thompson, James X.</creatorcontrib><creatorcontrib>Roth, Amy F.</creatorcontrib><creatorcontrib>Drisdel, Renaldo C.</creatorcontrib><creatorcontrib>Mastro, Ryan</creatorcontrib><creatorcontrib>Green, William N.</creatorcontrib><creatorcontrib>Yates III, John R.</creatorcontrib><creatorcontrib>Davis, Nicholas G.</creatorcontrib><creatorcontrib>El-Husseini, Alaa</creatorcontrib><title>Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation</title><title>Nature</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Palmitoylation regulates diverse aspects of neuronal protein trafficking and function. Here a global characterization of rat neural palmitoyl-proteomes identifies most of the known neural palmitoyl proteins—68 in total, plus more than 200 new palmitoyl-protein candidates, with further testing confirming palmitoylation for 21 of these candidates. The new palmitoyl proteins include neurotransmitter receptors, transporters, adhesion molecules, scaffolding proteins, as well as SNAREs and other vesicular trafficking proteins. Of particular interest is the finding of palmitoylation for a brain-specific Cdc42 splice variant. The palmitoylated Cdc42 isoform (Cdc42-palm) differs from the canonical, prenylated form (Cdc42-prenyl), both with regard to localization and function: Cdc42-palm concentrates in dendritic spines and has a special role in inducing these post-synaptic structures. Furthermore, assessing palmitoylation dynamics in drug-induced activity models identifies rapidly induced changes for Cdc42 as well as for other synaptic palmitoyl proteins, suggesting that palmitoylation may participate broadly in the activity-driven changes that shape synapse morphology and function.
Neuronal proteins: the palmitoyl-proteome
Palmitoylation, the addition of the lipid palmitate to proteins, plays an important role in modulating neuronal protein trafficking and function. A new proteomics study identifies palmitoylation as a key modifiable signal on many synapse-enriched proteins that contribute to activity-driven changes in synapse morphology and function. A large population of proteins — dubbed the neuronal 'palmitoyl-proteome' — is reversibly palmitoylated in response to neuronal activity. In particular, the study reveals a new, brain-specific isoform of the small GTPase Cdc42, whose unexpected palmitoylation specifically affects dendritic spine morphogenesis in response to neuronal activity.
A proteomics study unveils a large collection of proteins that get reversibly palmitoylated in response to neuronal activity — the neuronal palmitoyl-proteome. In particular, this study focuses on the discovery of a brain-specific isoform of the small GTPase Cdc42, whose unexpected palmitoylation specifically affects dendritic spine morphogenesis in response to neuronal activity. These findings identify palmitoylation as a key modifiable signal on many synapse-enriched proteins that contribute to activity-driven changes in synapse morphology and function.</description><subject>Alternative Splicing - genetics</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Candidates</subject><subject>cdc42 GTP-Binding Protein - genetics</subject><subject>cdc42 GTP-Binding Protein - metabolism</subject><subject>Cells, Cultured</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - embryology</subject><subject>Control</subject><subject>Dendrites - metabolism</subject><subject>Fatty acids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Health aspects</subject><subject>Humanities and Social Sciences</subject><subject>Lipids</subject><subject>Lipoylation</subject><subject>Localization</subject><subject>Metabolism</subject><subject>Models, Neurological</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>Neurons - metabolism</subject><subject>Organ Specificity</subject><subject>Palmitoylation</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Proteome - metabolism</subject><subject>Proteomics</subject><subject>Rats</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synapses - metabolism</subject><subject>Synthesis</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0s2L1DAUAPAiijuunrzLICiIdk3SJmkuwjD4sbCsoCseQ5q81ixt0k3axfnvzTDDfMiI9JCS_PLykvey7DlGFxgV1XunxikA4gzRB9kMl5zlJav4w2yGEKlyVBXsLHsS4y1CiGJePs7OsECCCMJn2fIapqC6-aC63o5-1eVD8CP43uo4D3APqotzs3IqTcxjGocx_ey0Gq13T7NHTWLwbDueZz8-fbxZfsmvvn6-XC6ucs0JGnOtqakaqrWoTIUEVrxUZW14VZsCm9pQrJhoagFK66IsGWbGiFI3HAhVDTTFefZhE3eY6h6MBjem1OUQbK_CSnpl5fGKs79k6-8lYRhVDKUAr7cBgr-bII6yt1FD1ykHfoqSCYGJ4P-HBBHGq6JM8OVf8NZPwaVXSGZ9B4rXKN-gVnUgrWt8yk634CAl6R00Nk0vsCCI4QLTfdAjrwd7Jw_RxQmUPgOpVCejvjnakMwIv8dWTTHKy-_fju3bf9vFzc_l9Umtg48xQLMrCUZy3aLyoEWTfnFYxb3d9mQCr7ZARa26Jiinbdw5ggRllK7du42Lacm1EPZvf-rcPxCG_XU</recordid><startdate>20081218</startdate><enddate>20081218</enddate><creator>Kang, Rujun</creator><creator>Wan, Junmei</creator><creator>Arstikaitis, Pamela</creator><creator>Takahashi, Hideto</creator><creator>Huang, Kun</creator><creator>Bailey, Aaron O.</creator><creator>Thompson, James X.</creator><creator>Roth, Amy F.</creator><creator>Drisdel, Renaldo C.</creator><creator>Mastro, Ryan</creator><creator>Green, William N.</creator><creator>Yates III, John R.</creator><creator>Davis, Nicholas G.</creator><creator>El-Husseini, Alaa</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081218</creationdate><title>Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation</title><author>Kang, Rujun ; Wan, Junmei ; Arstikaitis, Pamela ; Takahashi, Hideto ; Huang, Kun ; Bailey, Aaron O. ; Thompson, James X. ; Roth, Amy F. ; Drisdel, Renaldo C. ; Mastro, Ryan ; Green, William N. ; Yates III, John R. ; Davis, Nicholas G. ; El-Husseini, Alaa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c720t-cc5d8f5cc98d8091a74a4bd78bd31dbd51a69fb9eacc344616dd94cf7e25afef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alternative Splicing - genetics</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Candidates</topic><topic>cdc42 GTP-Binding Protein - genetics</topic><topic>cdc42 GTP-Binding Protein - metabolism</topic><topic>Cells, Cultured</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - embryology</topic><topic>Control</topic><topic>Dendrites - metabolism</topic><topic>Fatty acids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Health aspects</topic><topic>Humanities and Social Sciences</topic><topic>Lipids</topic><topic>Lipoylation</topic><topic>Localization</topic><topic>Metabolism</topic><topic>Models, Neurological</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>Neurons - metabolism</topic><topic>Organ Specificity</topic><topic>Palmitoylation</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Proteome - metabolism</topic><topic>Proteomics</topic><topic>Rats</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synapses - metabolism</topic><topic>Synthesis</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Rujun</creatorcontrib><creatorcontrib>Wan, Junmei</creatorcontrib><creatorcontrib>Arstikaitis, Pamela</creatorcontrib><creatorcontrib>Takahashi, Hideto</creatorcontrib><creatorcontrib>Huang, Kun</creatorcontrib><creatorcontrib>Bailey, Aaron O.</creatorcontrib><creatorcontrib>Thompson, James X.</creatorcontrib><creatorcontrib>Roth, Amy F.</creatorcontrib><creatorcontrib>Drisdel, Renaldo C.</creatorcontrib><creatorcontrib>Mastro, Ryan</creatorcontrib><creatorcontrib>Green, William N.</creatorcontrib><creatorcontrib>Yates III, John R.</creatorcontrib><creatorcontrib>Davis, Nicholas G.</creatorcontrib><creatorcontrib>El-Husseini, Alaa</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Rujun</au><au>Wan, Junmei</au><au>Arstikaitis, Pamela</au><au>Takahashi, Hideto</au><au>Huang, Kun</au><au>Bailey, Aaron O.</au><au>Thompson, James X.</au><au>Roth, Amy F.</au><au>Drisdel, Renaldo C.</au><au>Mastro, Ryan</au><au>Green, William N.</au><au>Yates III, John R.</au><au>Davis, Nicholas G.</au><au>El-Husseini, Alaa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation</atitle><jtitle>Nature</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2008-12-18</date><risdate>2008</risdate><volume>456</volume><issue>7224</issue><spage>904</spage><epage>909</epage><pages>904-909</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><eissn>1476-4679</eissn><coden>NATUAS</coden><abstract>Palmitoylation regulates diverse aspects of neuronal protein trafficking and function. Here a global characterization of rat neural palmitoyl-proteomes identifies most of the known neural palmitoyl proteins—68 in total, plus more than 200 new palmitoyl-protein candidates, with further testing confirming palmitoylation for 21 of these candidates. The new palmitoyl proteins include neurotransmitter receptors, transporters, adhesion molecules, scaffolding proteins, as well as SNAREs and other vesicular trafficking proteins. Of particular interest is the finding of palmitoylation for a brain-specific Cdc42 splice variant. The palmitoylated Cdc42 isoform (Cdc42-palm) differs from the canonical, prenylated form (Cdc42-prenyl), both with regard to localization and function: Cdc42-palm concentrates in dendritic spines and has a special role in inducing these post-synaptic structures. Furthermore, assessing palmitoylation dynamics in drug-induced activity models identifies rapidly induced changes for Cdc42 as well as for other synaptic palmitoyl proteins, suggesting that palmitoylation may participate broadly in the activity-driven changes that shape synapse morphology and function.
Neuronal proteins: the palmitoyl-proteome
Palmitoylation, the addition of the lipid palmitate to proteins, plays an important role in modulating neuronal protein trafficking and function. A new proteomics study identifies palmitoylation as a key modifiable signal on many synapse-enriched proteins that contribute to activity-driven changes in synapse morphology and function. A large population of proteins — dubbed the neuronal 'palmitoyl-proteome' — is reversibly palmitoylated in response to neuronal activity. In particular, the study reveals a new, brain-specific isoform of the small GTPase Cdc42, whose unexpected palmitoylation specifically affects dendritic spine morphogenesis in response to neuronal activity.
A proteomics study unveils a large collection of proteins that get reversibly palmitoylated in response to neuronal activity — the neuronal palmitoyl-proteome. In particular, this study focuses on the discovery of a brain-specific isoform of the small GTPase Cdc42, whose unexpected palmitoylation specifically affects dendritic spine morphogenesis in response to neuronal activity. These findings identify palmitoylation as a key modifiable signal on many synapse-enriched proteins that contribute to activity-driven changes in synapse morphology and function.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19092927</pmid><doi>10.1038/nature07605</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature, 2008-12, Vol.456 (7224), p.904-909 |
issn | 0028-0836 1476-4687 1476-4679 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2610860 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | Alternative Splicing - genetics Animals Biological and medical sciences Candidates cdc42 GTP-Binding Protein - genetics cdc42 GTP-Binding Protein - metabolism Cells, Cultured Cerebral Cortex - cytology Cerebral Cortex - embryology Control Dendrites - metabolism Fatty acids Fundamental and applied biological sciences. Psychology Health aspects Humanities and Social Sciences Lipids Lipoylation Localization Metabolism Models, Neurological Morphology multidisciplinary Neurons - metabolism Organ Specificity Palmitoylation Protein-protein interactions Proteins Proteome - metabolism Proteomics Rats Science Science (multidisciplinary) Synapses - metabolism Synthesis Vertebrates: nervous system and sense organs |
title | Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20palmitoyl-proteomics%20reveals%20dynamic%20synaptic%20palmitoylation&rft.jtitle=Nature&rft.au=Kang,%20Rujun&rft.date=2008-12-18&rft.volume=456&rft.issue=7224&rft.spage=904&rft.epage=909&rft.pages=904-909&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature07605&rft_dat=%3Cgale_pubme%3EA192061315%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204461514&rft_id=info:pmid/19092927&rft_galeid=A192061315&rfr_iscdi=true |