Bleach Activates a Redox-Regulated Chaperone by Oxidative Protein Unfolding

Hypochlorous acid (HOCl), the active ingredient in household bleach, is an effective antimicrobial produced by the mammalian host defense to kill invading microorganisms. Despite the widespread use of HOCl, surprisingly little is known about its mode of action. In this study, we demonstrate that low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2008-11, Vol.135 (4), p.691-701
Hauptverfasser: Winter, J., Ilbert, M., Graf, P.C.F., Özcelik, D., Jakob, U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 701
container_issue 4
container_start_page 691
container_title Cell
container_volume 135
creator Winter, J.
Ilbert, M.
Graf, P.C.F.
Özcelik, D.
Jakob, U.
description Hypochlorous acid (HOCl), the active ingredient in household bleach, is an effective antimicrobial produced by the mammalian host defense to kill invading microorganisms. Despite the widespread use of HOCl, surprisingly little is known about its mode of action. In this study, we demonstrate that low molar ratios of HOCl to protein cause oxidative protein unfolding in vitro and target thermolabile proteins for irreversible aggregation in vivo. As a defense mechanism, bacteria use the redox-regulated chaperone Hsp33, which responds to bleach treatment with the reversible oxidative unfolding of its C-terminal redox switch domain. HOCl-mediated unfolding turns inactive Hsp33 into a highly active chaperone holdase, which protects essential Escherichia coli proteins against HOCl-induced aggregation and increases bacterial HOCl resistance. Our results substantially improve our molecular understanding about HOCl's functional mechanism. They suggest that the antimicrobial effects of bleach are largely based on HOCl's ability to cause aggregation of essential bacterial proteins.
doi_str_mv 10.1016/j.cell.2008.09.024
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2606091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867408011811</els_id><sourcerecordid>19565953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-47b97ff7e6fbbf4d4d2c4a2d3bb5ad5af73443077b673508f53c8e41fff730583</originalsourceid><addsrcrecordid>eNp9kUtrGzEUhUVpady0f6CLMqvuZnqlkUYjKIXE9EUDKaFZC410ZcuMR640Nsm_r4xNH5uuBFffOfdyDiGvKTQUaPdu01gcx4YB9A2oBhh_QhYUlKw5lewpWQAoVved5BfkRc4bKKAQ4jm5oApoy2S_IN-uRzR2XV3ZORzMjLky1R26-FDf4Wo_lomrlmuzwxQnrIbH6vYhOFNYrL6nOGOYqvvJx9GFafWSPPNmzPjq_F6S-08ffyy_1De3n78ur25qy3s-11wOSnovsfPD4LnjjllumGuHQRgnjJct5y1IOXSyFdB70doeOfVF04Lo20vy4eS72w9bdBanOZlR71LYmvSoown6358prPUqHjTroANFi8Hbs0GKP_eYZ70N-ZilmTDus6ZKdEKJtoDsBNoUc07ofy-hoI8d6I0-6vSxAw1Klw6K6M3f5_2RnEMvwPsTgCWkQ8Cksw04WXQhoZ21i-F__r8ArH6ZtA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19565953</pqid></control><display><type>article</type><title>Bleach Activates a Redox-Regulated Chaperone by Oxidative Protein Unfolding</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Winter, J. ; Ilbert, M. ; Graf, P.C.F. ; Özcelik, D. ; Jakob, U.</creator><creatorcontrib>Winter, J. ; Ilbert, M. ; Graf, P.C.F. ; Özcelik, D. ; Jakob, U.</creatorcontrib><description>Hypochlorous acid (HOCl), the active ingredient in household bleach, is an effective antimicrobial produced by the mammalian host defense to kill invading microorganisms. Despite the widespread use of HOCl, surprisingly little is known about its mode of action. In this study, we demonstrate that low molar ratios of HOCl to protein cause oxidative protein unfolding in vitro and target thermolabile proteins for irreversible aggregation in vivo. As a defense mechanism, bacteria use the redox-regulated chaperone Hsp33, which responds to bleach treatment with the reversible oxidative unfolding of its C-terminal redox switch domain. HOCl-mediated unfolding turns inactive Hsp33 into a highly active chaperone holdase, which protects essential Escherichia coli proteins against HOCl-induced aggregation and increases bacterial HOCl resistance. Our results substantially improve our molecular understanding about HOCl's functional mechanism. They suggest that the antimicrobial effects of bleach are largely based on HOCl's ability to cause aggregation of essential bacterial proteins.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2008.09.024</identifier><identifier>PMID: 19013278</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>CELLBIO ; Disulfides ; Escherichia coli ; Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; Heat-Shock Proteins - metabolism ; HUMDISEASE ; Hypochlorous Acid - pharmacology ; Models, Biological ; Molecular Chaperones - metabolism ; Molecular Conformation ; Oxidation-Reduction ; Oxygen - metabolism ; Protein Denaturation ; Protein Structure, Tertiary ; Reactive Oxygen Species ; Substrate Specificity ; Sulfhydryl Compounds - chemistry ; Temperature</subject><ispartof>Cell, 2008-11, Vol.135 (4), p.691-701</ispartof><rights>2008 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-47b97ff7e6fbbf4d4d2c4a2d3bb5ad5af73443077b673508f53c8e41fff730583</citedby><cites>FETCH-LOGICAL-c484t-47b97ff7e6fbbf4d4d2c4a2d3bb5ad5af73443077b673508f53c8e41fff730583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867408011811$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19013278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Winter, J.</creatorcontrib><creatorcontrib>Ilbert, M.</creatorcontrib><creatorcontrib>Graf, P.C.F.</creatorcontrib><creatorcontrib>Özcelik, D.</creatorcontrib><creatorcontrib>Jakob, U.</creatorcontrib><title>Bleach Activates a Redox-Regulated Chaperone by Oxidative Protein Unfolding</title><title>Cell</title><addtitle>Cell</addtitle><description>Hypochlorous acid (HOCl), the active ingredient in household bleach, is an effective antimicrobial produced by the mammalian host defense to kill invading microorganisms. Despite the widespread use of HOCl, surprisingly little is known about its mode of action. In this study, we demonstrate that low molar ratios of HOCl to protein cause oxidative protein unfolding in vitro and target thermolabile proteins for irreversible aggregation in vivo. As a defense mechanism, bacteria use the redox-regulated chaperone Hsp33, which responds to bleach treatment with the reversible oxidative unfolding of its C-terminal redox switch domain. HOCl-mediated unfolding turns inactive Hsp33 into a highly active chaperone holdase, which protects essential Escherichia coli proteins against HOCl-induced aggregation and increases bacterial HOCl resistance. Our results substantially improve our molecular understanding about HOCl's functional mechanism. They suggest that the antimicrobial effects of bleach are largely based on HOCl's ability to cause aggregation of essential bacterial proteins.</description><subject>CELLBIO</subject><subject>Disulfides</subject><subject>Escherichia coli</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>HUMDISEASE</subject><subject>Hypochlorous Acid - pharmacology</subject><subject>Models, Biological</subject><subject>Molecular Chaperones - metabolism</subject><subject>Molecular Conformation</subject><subject>Oxidation-Reduction</subject><subject>Oxygen - metabolism</subject><subject>Protein Denaturation</subject><subject>Protein Structure, Tertiary</subject><subject>Reactive Oxygen Species</subject><subject>Substrate Specificity</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Temperature</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtrGzEUhUVpady0f6CLMqvuZnqlkUYjKIXE9EUDKaFZC410ZcuMR640Nsm_r4xNH5uuBFffOfdyDiGvKTQUaPdu01gcx4YB9A2oBhh_QhYUlKw5lewpWQAoVved5BfkRc4bKKAQ4jm5oApoy2S_IN-uRzR2XV3ZORzMjLky1R26-FDf4Wo_lomrlmuzwxQnrIbH6vYhOFNYrL6nOGOYqvvJx9GFafWSPPNmzPjq_F6S-08ffyy_1De3n78ur25qy3s-11wOSnovsfPD4LnjjllumGuHQRgnjJct5y1IOXSyFdB70doeOfVF04Lo20vy4eS72w9bdBanOZlR71LYmvSoown6358prPUqHjTroANFi8Hbs0GKP_eYZ70N-ZilmTDus6ZKdEKJtoDsBNoUc07ofy-hoI8d6I0-6vSxAw1Klw6K6M3f5_2RnEMvwPsTgCWkQ8Cksw04WXQhoZ21i-F__r8ArH6ZtA</recordid><startdate>20081114</startdate><enddate>20081114</enddate><creator>Winter, J.</creator><creator>Ilbert, M.</creator><creator>Graf, P.C.F.</creator><creator>Özcelik, D.</creator><creator>Jakob, U.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20081114</creationdate><title>Bleach Activates a Redox-Regulated Chaperone by Oxidative Protein Unfolding</title><author>Winter, J. ; Ilbert, M. ; Graf, P.C.F. ; Özcelik, D. ; Jakob, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-47b97ff7e6fbbf4d4d2c4a2d3bb5ad5af73443077b673508f53c8e41fff730583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>CELLBIO</topic><topic>Disulfides</topic><topic>Escherichia coli</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>HUMDISEASE</topic><topic>Hypochlorous Acid - pharmacology</topic><topic>Models, Biological</topic><topic>Molecular Chaperones - metabolism</topic><topic>Molecular Conformation</topic><topic>Oxidation-Reduction</topic><topic>Oxygen - metabolism</topic><topic>Protein Denaturation</topic><topic>Protein Structure, Tertiary</topic><topic>Reactive Oxygen Species</topic><topic>Substrate Specificity</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winter, J.</creatorcontrib><creatorcontrib>Ilbert, M.</creatorcontrib><creatorcontrib>Graf, P.C.F.</creatorcontrib><creatorcontrib>Özcelik, D.</creatorcontrib><creatorcontrib>Jakob, U.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winter, J.</au><au>Ilbert, M.</au><au>Graf, P.C.F.</au><au>Özcelik, D.</au><au>Jakob, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bleach Activates a Redox-Regulated Chaperone by Oxidative Protein Unfolding</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2008-11-14</date><risdate>2008</risdate><volume>135</volume><issue>4</issue><spage>691</spage><epage>701</epage><pages>691-701</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Hypochlorous acid (HOCl), the active ingredient in household bleach, is an effective antimicrobial produced by the mammalian host defense to kill invading microorganisms. Despite the widespread use of HOCl, surprisingly little is known about its mode of action. In this study, we demonstrate that low molar ratios of HOCl to protein cause oxidative protein unfolding in vitro and target thermolabile proteins for irreversible aggregation in vivo. As a defense mechanism, bacteria use the redox-regulated chaperone Hsp33, which responds to bleach treatment with the reversible oxidative unfolding of its C-terminal redox switch domain. HOCl-mediated unfolding turns inactive Hsp33 into a highly active chaperone holdase, which protects essential Escherichia coli proteins against HOCl-induced aggregation and increases bacterial HOCl resistance. Our results substantially improve our molecular understanding about HOCl's functional mechanism. They suggest that the antimicrobial effects of bleach are largely based on HOCl's ability to cause aggregation of essential bacterial proteins.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19013278</pmid><doi>10.1016/j.cell.2008.09.024</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2008-11, Vol.135 (4), p.691-701
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2606091
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects CELLBIO
Disulfides
Escherichia coli
Escherichia coli - metabolism
Escherichia coli Proteins - metabolism
Heat-Shock Proteins - metabolism
HUMDISEASE
Hypochlorous Acid - pharmacology
Models, Biological
Molecular Chaperones - metabolism
Molecular Conformation
Oxidation-Reduction
Oxygen - metabolism
Protein Denaturation
Protein Structure, Tertiary
Reactive Oxygen Species
Substrate Specificity
Sulfhydryl Compounds - chemistry
Temperature
title Bleach Activates a Redox-Regulated Chaperone by Oxidative Protein Unfolding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bleach%20Activates%20a%20Redox-Regulated%20Chaperone%20by%20Oxidative%20Protein%20Unfolding&rft.jtitle=Cell&rft.au=Winter,%20J.&rft.date=2008-11-14&rft.volume=135&rft.issue=4&rft.spage=691&rft.epage=701&rft.pages=691-701&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2008.09.024&rft_dat=%3Cproquest_pubme%3E19565953%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19565953&rft_id=info:pmid/19013278&rft_els_id=S0092867408011811&rfr_iscdi=true