Synapsis and catalysis by activated Tn3 resolvase mutants

The serine recombinase Tn3 resolvase catalyses recombination between two 114 bp res sites, each of which contains binding sites for three resolvase dimers. We have analysed the in vitro properties of resolvase variants with ‘activating’ mutations, which can catalyse recombination at binding site I o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2008-12, Vol.36 (22), p.7181-7191
Hauptverfasser: Olorunniji, Femi J., He, Jiuya, Wenwieser, Sandra V.C.T., Boocock, Martin R., Stark, W. Marshall
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7191
container_issue 22
container_start_page 7181
container_title Nucleic acids research
container_volume 36
creator Olorunniji, Femi J.
He, Jiuya
Wenwieser, Sandra V.C.T.
Boocock, Martin R.
Stark, W. Marshall
description The serine recombinase Tn3 resolvase catalyses recombination between two 114 bp res sites, each of which contains binding sites for three resolvase dimers. We have analysed the in vitro properties of resolvase variants with ‘activating’ mutations, which can catalyse recombination at binding site I of res when the rest of res is absent. Site I × site I recombination promoted by these variants can be as fast as res × res recombination promoted by wild-type resolvase. Activated variants have reduced topological selectivity and no longer require the 2–3′ interface between subunits that is essential for wild-type resolvase-mediated recombination. They also promote formation of a stable synapse comprising a resolvase tetramer and two copies of site I. Cleavage of the DNA strands by the activated mutants is slow relative to the rate of synapsis. Stable resolvase tetramers were not detected in the absence of DNA or bound to a single site I. Our results lead us to conclude that the synapse is assembled by sequential binding of resolvase monomers to site I followed by interaction of two site I-dimer complexes. We discuss the implications of our results for the mechanisms of synapsis and regulation in recombination by wild-type resolvase.
doi_str_mv 10.1093/nar/gkn885
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2602789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkn885</oup_id><sourcerecordid>1615033711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-dccf7a93b56af59c5e7f89f0b69b7749f177dfe491b4c19518f3eaaff17549583</originalsourceid><addsrcrecordid>eNqF0U1rFDEYB_Agit1WL34AGYR6EKZNJu8XQRbbCpUqVhEv4ZlMUqedzWyTzOJ-e1NmqS8HPYUkP_7kyR-hZwQfEazpcYB4fHUTlOIP0IJQ0dRMi-YhWmCKeU0wU3toP6VrjAkjnD1Ge0RjwknDFkh_2gZYpz5VELrKQoZhe7drtxXY3G8gu666DLSKLo3DBpKrVlOGkNMT9MjDkNzT3XqAPp-8vVye1ecXp--Wb85ry4XKdWetl6BpywV4ri130ivtcSt0KyXTnkjZecc0aZklmhPlqQPw5ZwzzRU9QK_n3PXUrlxnXcgRBrOO_Qri1ozQmz9vQv_dXI0b0wjcSKVLwMtdQBxvJ5eyWfXJumGA4MYpGaGV1pjS_8Km5BFNWYEv_oLX4xRD-YVisJCi0bKgVzOycUwpOn__ZILNXW-m9Gbm3gp-_vuQv-iuqAIOZzBO638H1bPrU3Y_7iXEGyMkldycff1mBD398PH98ouh9Cddo7Cp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200676297</pqid></control><display><type>article</type><title>Synapsis and catalysis by activated Tn3 resolvase mutants</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Olorunniji, Femi J. ; He, Jiuya ; Wenwieser, Sandra V.C.T. ; Boocock, Martin R. ; Stark, W. Marshall</creator><creatorcontrib>Olorunniji, Femi J. ; He, Jiuya ; Wenwieser, Sandra V.C.T. ; Boocock, Martin R. ; Stark, W. Marshall</creatorcontrib><description>The serine recombinase Tn3 resolvase catalyses recombination between two 114 bp res sites, each of which contains binding sites for three resolvase dimers. We have analysed the in vitro properties of resolvase variants with ‘activating’ mutations, which can catalyse recombination at binding site I of res when the rest of res is absent. Site I × site I recombination promoted by these variants can be as fast as res × res recombination promoted by wild-type resolvase. Activated variants have reduced topological selectivity and no longer require the 2–3′ interface between subunits that is essential for wild-type resolvase-mediated recombination. They also promote formation of a stable synapse comprising a resolvase tetramer and two copies of site I. Cleavage of the DNA strands by the activated mutants is slow relative to the rate of synapsis. Stable resolvase tetramers were not detected in the absence of DNA or bound to a single site I. Our results lead us to conclude that the synapse is assembled by sequential binding of resolvase monomers to site I followed by interaction of two site I-dimer complexes. We discuss the implications of our results for the mechanisms of synapsis and regulation in recombination by wild-type resolvase.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkn885</identifier><identifier>PMID: 19015124</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Catalysis ; DNA - chemistry ; DNA - metabolism ; Kinetics ; Models, Molecular ; Mutation ; Nucleic Acid Enzymes ; Recombination, Genetic ; Transposon Resolvases - chemistry ; Transposon Resolvases - genetics ; Transposon Resolvases - metabolism</subject><ispartof>Nucleic acids research, 2008-12, Vol.36 (22), p.7181-7191</ispartof><rights>2008 The Author(s) 2008</rights><rights>2008 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-dccf7a93b56af59c5e7f89f0b69b7749f177dfe491b4c19518f3eaaff17549583</citedby><cites>FETCH-LOGICAL-c568t-dccf7a93b56af59c5e7f89f0b69b7749f177dfe491b4c19518f3eaaff17549583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2602789/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2602789/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19015124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Olorunniji, Femi J.</creatorcontrib><creatorcontrib>He, Jiuya</creatorcontrib><creatorcontrib>Wenwieser, Sandra V.C.T.</creatorcontrib><creatorcontrib>Boocock, Martin R.</creatorcontrib><creatorcontrib>Stark, W. Marshall</creatorcontrib><title>Synapsis and catalysis by activated Tn3 resolvase mutants</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The serine recombinase Tn3 resolvase catalyses recombination between two 114 bp res sites, each of which contains binding sites for three resolvase dimers. We have analysed the in vitro properties of resolvase variants with ‘activating’ mutations, which can catalyse recombination at binding site I of res when the rest of res is absent. Site I × site I recombination promoted by these variants can be as fast as res × res recombination promoted by wild-type resolvase. Activated variants have reduced topological selectivity and no longer require the 2–3′ interface between subunits that is essential for wild-type resolvase-mediated recombination. They also promote formation of a stable synapse comprising a resolvase tetramer and two copies of site I. Cleavage of the DNA strands by the activated mutants is slow relative to the rate of synapsis. Stable resolvase tetramers were not detected in the absence of DNA or bound to a single site I. Our results lead us to conclude that the synapse is assembled by sequential binding of resolvase monomers to site I followed by interaction of two site I-dimer complexes. We discuss the implications of our results for the mechanisms of synapsis and regulation in recombination by wild-type resolvase.</description><subject>Catalysis</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Nucleic Acid Enzymes</subject><subject>Recombination, Genetic</subject><subject>Transposon Resolvases - chemistry</subject><subject>Transposon Resolvases - genetics</subject><subject>Transposon Resolvases - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqF0U1rFDEYB_Agit1WL34AGYR6EKZNJu8XQRbbCpUqVhEv4ZlMUqedzWyTzOJ-e1NmqS8HPYUkP_7kyR-hZwQfEazpcYB4fHUTlOIP0IJQ0dRMi-YhWmCKeU0wU3toP6VrjAkjnD1Ge0RjwknDFkh_2gZYpz5VELrKQoZhe7drtxXY3G8gu666DLSKLo3DBpKrVlOGkNMT9MjDkNzT3XqAPp-8vVye1ecXp--Wb85ry4XKdWetl6BpywV4ri130ivtcSt0KyXTnkjZecc0aZklmhPlqQPw5ZwzzRU9QK_n3PXUrlxnXcgRBrOO_Qri1ozQmz9vQv_dXI0b0wjcSKVLwMtdQBxvJ5eyWfXJumGA4MYpGaGV1pjS_8Km5BFNWYEv_oLX4xRD-YVisJCi0bKgVzOycUwpOn__ZILNXW-m9Gbm3gp-_vuQv-iuqAIOZzBO638H1bPrU3Y_7iXEGyMkldycff1mBD398PH98ouh9Cddo7Cp</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Olorunniji, Femi J.</creator><creator>He, Jiuya</creator><creator>Wenwieser, Sandra V.C.T.</creator><creator>Boocock, Martin R.</creator><creator>Stark, W. Marshall</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081201</creationdate><title>Synapsis and catalysis by activated Tn3 resolvase mutants</title><author>Olorunniji, Femi J. ; He, Jiuya ; Wenwieser, Sandra V.C.T. ; Boocock, Martin R. ; Stark, W. Marshall</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-dccf7a93b56af59c5e7f89f0b69b7749f177dfe491b4c19518f3eaaff17549583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Catalysis</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Nucleic Acid Enzymes</topic><topic>Recombination, Genetic</topic><topic>Transposon Resolvases - chemistry</topic><topic>Transposon Resolvases - genetics</topic><topic>Transposon Resolvases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olorunniji, Femi J.</creatorcontrib><creatorcontrib>He, Jiuya</creatorcontrib><creatorcontrib>Wenwieser, Sandra V.C.T.</creatorcontrib><creatorcontrib>Boocock, Martin R.</creatorcontrib><creatorcontrib>Stark, W. Marshall</creatorcontrib><collection>Istex</collection><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olorunniji, Femi J.</au><au>He, Jiuya</au><au>Wenwieser, Sandra V.C.T.</au><au>Boocock, Martin R.</au><au>Stark, W. Marshall</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synapsis and catalysis by activated Tn3 resolvase mutants</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>36</volume><issue>22</issue><spage>7181</spage><epage>7191</epage><pages>7181-7191</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>The serine recombinase Tn3 resolvase catalyses recombination between two 114 bp res sites, each of which contains binding sites for three resolvase dimers. We have analysed the in vitro properties of resolvase variants with ‘activating’ mutations, which can catalyse recombination at binding site I of res when the rest of res is absent. Site I × site I recombination promoted by these variants can be as fast as res × res recombination promoted by wild-type resolvase. Activated variants have reduced topological selectivity and no longer require the 2–3′ interface between subunits that is essential for wild-type resolvase-mediated recombination. They also promote formation of a stable synapse comprising a resolvase tetramer and two copies of site I. Cleavage of the DNA strands by the activated mutants is slow relative to the rate of synapsis. Stable resolvase tetramers were not detected in the absence of DNA or bound to a single site I. Our results lead us to conclude that the synapse is assembled by sequential binding of resolvase monomers to site I followed by interaction of two site I-dimer complexes. We discuss the implications of our results for the mechanisms of synapsis and regulation in recombination by wild-type resolvase.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>19015124</pmid><doi>10.1093/nar/gkn885</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2008-12, Vol.36 (22), p.7181-7191
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2602789
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Catalysis
DNA - chemistry
DNA - metabolism
Kinetics
Models, Molecular
Mutation
Nucleic Acid Enzymes
Recombination, Genetic
Transposon Resolvases - chemistry
Transposon Resolvases - genetics
Transposon Resolvases - metabolism
title Synapsis and catalysis by activated Tn3 resolvase mutants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synapsis%20and%20catalysis%20by%20activated%20Tn3%20resolvase%20mutants&rft.jtitle=Nucleic%20acids%20research&rft.au=Olorunniji,%20Femi%20J.&rft.date=2008-12-01&rft.volume=36&rft.issue=22&rft.spage=7181&rft.epage=7191&rft.pages=7181-7191&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkn885&rft_dat=%3Cproquest_pubme%3E1615033711%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200676297&rft_id=info:pmid/19015124&rft_oup_id=10.1093/nar/gkn885&rfr_iscdi=true