Gap Junction Coupling and Calcium Waves in the Pancreatic Islet

The pancreatic islet is a highly coupled, multicellular system that exhibits complex spatiotemporal electrical activity in response to elevated glucose levels. The emergent properties of islets, which differ from those arising in isolated islet cells, are believed to arise in part by gap junctional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2008-12, Vol.95 (11), p.5048-5061
Hauptverfasser: Benninger, Richard K.P., Zhang, Min, Head, W. Steven, Satin, Leslie S., Piston, David W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5061
container_issue 11
container_start_page 5048
container_title Biophysical journal
container_volume 95
creator Benninger, Richard K.P.
Zhang, Min
Head, W. Steven
Satin, Leslie S.
Piston, David W.
description The pancreatic islet is a highly coupled, multicellular system that exhibits complex spatiotemporal electrical activity in response to elevated glucose levels. The emergent properties of islets, which differ from those arising in isolated islet cells, are believed to arise in part by gap junctional coupling, but the mechanisms through which this coupling occurs are poorly understood. To uncover these mechanisms, we have used both high-speed imaging and theoretical modeling of the electrical activity in pancreatic islets under a reduction in the gap junction mediated electrical coupling. Utilizing islets from a gap junction protein connexin 36 knockout mouse model together with chemical inhibitors, we can modulate the electrical coupling in the islet in a precise manner and quantify this modulation by electrophysiology measurements. We find that after a reduction in electrical coupling, calcium waves are slowed as well as disrupted, and the number of cells showing synchronous calcium oscillations is reduced. This behavior can be reproduced by computational modeling of a heterogeneous population of β-cells with heterogeneous levels of electrical coupling. The resulting quantitative agreement between the data and analytical models of islet connectivity, using only a single free parameter, reveals the mechanistic underpinnings of the multicellular behavior of the islet.
doi_str_mv 10.1529/biophysj.108.140863
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2586567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634950878932X</els_id><sourcerecordid>864421127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-b236977766343ddd8e4f0a8eaef662a62dad9ff2d8d1311a0ab8a260219d062e3</originalsourceid><addsrcrecordid>eNp9kU1vFDEMhiNURJfCL0BCOZXTLE5mks0coKpWUIoqwQHEMfImnm6q2WRIZlbqv2eqXb4uPVm2H7-J_TL2SsBSKNm-3YQ0bO_L3VKAWYoGjK6fsIVQjaxgTk7YAgB0VTetOmXPS7kDEFKBeMZOhTGgWqkW7OIKB_55im4MKfJ1moY-xFuO0fM19i5MO_4D91R4iHzcEv-K0WXCMTh-XXoaX7CnHfaFXh7jGfv-8cO39afq5svV9frypnJKqbHayFq3q9VK67qpvfeGmg7QEFKntUQtPfq266Q3XtRCIODGoNQgRetBS6rP2PuD7jBtduQdxTFjb4ccdpjvbcJg_-_EsLW3aW-lMlrp1Szw5iiQ08-Jymh3oTjqe4yUpmKNbhophHwgzx8ldWtAC93OYH0AXU6lZOr-fEeAfbDI_rZoLhh7sGieev3vJn9njp7MwLsDQPM994GyLS5QdORDJjdan8KjD_wCu52kcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69806169</pqid></control><display><type>article</type><title>Gap Junction Coupling and Calcium Waves in the Pancreatic Islet</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Benninger, Richard K.P. ; Zhang, Min ; Head, W. Steven ; Satin, Leslie S. ; Piston, David W.</creator><creatorcontrib>Benninger, Richard K.P. ; Zhang, Min ; Head, W. Steven ; Satin, Leslie S. ; Piston, David W.</creatorcontrib><description>The pancreatic islet is a highly coupled, multicellular system that exhibits complex spatiotemporal electrical activity in response to elevated glucose levels. The emergent properties of islets, which differ from those arising in isolated islet cells, are believed to arise in part by gap junctional coupling, but the mechanisms through which this coupling occurs are poorly understood. To uncover these mechanisms, we have used both high-speed imaging and theoretical modeling of the electrical activity in pancreatic islets under a reduction in the gap junction mediated electrical coupling. Utilizing islets from a gap junction protein connexin 36 knockout mouse model together with chemical inhibitors, we can modulate the electrical coupling in the islet in a precise manner and quantify this modulation by electrophysiology measurements. We find that after a reduction in electrical coupling, calcium waves are slowed as well as disrupted, and the number of cells showing synchronous calcium oscillations is reduced. This behavior can be reproduced by computational modeling of a heterogeneous population of β-cells with heterogeneous levels of electrical coupling. The resulting quantitative agreement between the data and analytical models of islet connectivity, using only a single free parameter, reveals the mechanistic underpinnings of the multicellular behavior of the islet.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.108.140863</identifier><identifier>PMID: 18805925</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biophysical Theory and Modeling ; Calcium - metabolism ; Calcium Signaling - drug effects ; Calcium Signaling - genetics ; Cattle ; Electricity ; Gap Junctions - drug effects ; Gap Junctions - genetics ; Gap Junctions - metabolism ; Gene Knockout Techniques ; Insulin-Secreting Cells - cytology ; Insulin-Secreting Cells - metabolism ; Islets of Langerhans - cytology ; Islets of Langerhans - metabolism ; Mice ; Models, Biological</subject><ispartof>Biophysical journal, 2008-12, Vol.95 (11), p.5048-5061</ispartof><rights>2008 The Biophysical Society</rights><rights>Copyright © 2008, Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-b236977766343ddd8e4f0a8eaef662a62dad9ff2d8d1311a0ab8a260219d062e3</citedby><cites>FETCH-LOGICAL-c555t-b236977766343ddd8e4f0a8eaef662a62dad9ff2d8d1311a0ab8a260219d062e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586567/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000634950878932X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18805925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benninger, Richard K.P.</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Head, W. Steven</creatorcontrib><creatorcontrib>Satin, Leslie S.</creatorcontrib><creatorcontrib>Piston, David W.</creatorcontrib><title>Gap Junction Coupling and Calcium Waves in the Pancreatic Islet</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The pancreatic islet is a highly coupled, multicellular system that exhibits complex spatiotemporal electrical activity in response to elevated glucose levels. The emergent properties of islets, which differ from those arising in isolated islet cells, are believed to arise in part by gap junctional coupling, but the mechanisms through which this coupling occurs are poorly understood. To uncover these mechanisms, we have used both high-speed imaging and theoretical modeling of the electrical activity in pancreatic islets under a reduction in the gap junction mediated electrical coupling. Utilizing islets from a gap junction protein connexin 36 knockout mouse model together with chemical inhibitors, we can modulate the electrical coupling in the islet in a precise manner and quantify this modulation by electrophysiology measurements. We find that after a reduction in electrical coupling, calcium waves are slowed as well as disrupted, and the number of cells showing synchronous calcium oscillations is reduced. This behavior can be reproduced by computational modeling of a heterogeneous population of β-cells with heterogeneous levels of electrical coupling. The resulting quantitative agreement between the data and analytical models of islet connectivity, using only a single free parameter, reveals the mechanistic underpinnings of the multicellular behavior of the islet.</description><subject>Animals</subject><subject>Biophysical Theory and Modeling</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling - drug effects</subject><subject>Calcium Signaling - genetics</subject><subject>Cattle</subject><subject>Electricity</subject><subject>Gap Junctions - drug effects</subject><subject>Gap Junctions - genetics</subject><subject>Gap Junctions - metabolism</subject><subject>Gene Knockout Techniques</subject><subject>Insulin-Secreting Cells - cytology</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Islets of Langerhans - cytology</subject><subject>Islets of Langerhans - metabolism</subject><subject>Mice</subject><subject>Models, Biological</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1vFDEMhiNURJfCL0BCOZXTLE5mks0coKpWUIoqwQHEMfImnm6q2WRIZlbqv2eqXb4uPVm2H7-J_TL2SsBSKNm-3YQ0bO_L3VKAWYoGjK6fsIVQjaxgTk7YAgB0VTetOmXPS7kDEFKBeMZOhTGgWqkW7OIKB_55im4MKfJ1moY-xFuO0fM19i5MO_4D91R4iHzcEv-K0WXCMTh-XXoaX7CnHfaFXh7jGfv-8cO39afq5svV9frypnJKqbHayFq3q9VK67qpvfeGmg7QEFKntUQtPfq266Q3XtRCIODGoNQgRetBS6rP2PuD7jBtduQdxTFjb4ccdpjvbcJg_-_EsLW3aW-lMlrp1Szw5iiQ08-Jymh3oTjqe4yUpmKNbhophHwgzx8ldWtAC93OYH0AXU6lZOr-fEeAfbDI_rZoLhh7sGieev3vJn9njp7MwLsDQPM994GyLS5QdORDJjdan8KjD_wCu52kcA</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Benninger, Richard K.P.</creator><creator>Zhang, Min</creator><creator>Head, W. Steven</creator><creator>Satin, Leslie S.</creator><creator>Piston, David W.</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QP</scope><scope>5PM</scope></search><sort><creationdate>20081201</creationdate><title>Gap Junction Coupling and Calcium Waves in the Pancreatic Islet</title><author>Benninger, Richard K.P. ; Zhang, Min ; Head, W. Steven ; Satin, Leslie S. ; Piston, David W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-b236977766343ddd8e4f0a8eaef662a62dad9ff2d8d1311a0ab8a260219d062e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Biophysical Theory and Modeling</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling - drug effects</topic><topic>Calcium Signaling - genetics</topic><topic>Cattle</topic><topic>Electricity</topic><topic>Gap Junctions - drug effects</topic><topic>Gap Junctions - genetics</topic><topic>Gap Junctions - metabolism</topic><topic>Gene Knockout Techniques</topic><topic>Insulin-Secreting Cells - cytology</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Islets of Langerhans - cytology</topic><topic>Islets of Langerhans - metabolism</topic><topic>Mice</topic><topic>Models, Biological</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benninger, Richard K.P.</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Head, W. Steven</creatorcontrib><creatorcontrib>Satin, Leslie S.</creatorcontrib><creatorcontrib>Piston, David W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benninger, Richard K.P.</au><au>Zhang, Min</au><au>Head, W. Steven</au><au>Satin, Leslie S.</au><au>Piston, David W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gap Junction Coupling and Calcium Waves in the Pancreatic Islet</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>95</volume><issue>11</issue><spage>5048</spage><epage>5061</epage><pages>5048-5061</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The pancreatic islet is a highly coupled, multicellular system that exhibits complex spatiotemporal electrical activity in response to elevated glucose levels. The emergent properties of islets, which differ from those arising in isolated islet cells, are believed to arise in part by gap junctional coupling, but the mechanisms through which this coupling occurs are poorly understood. To uncover these mechanisms, we have used both high-speed imaging and theoretical modeling of the electrical activity in pancreatic islets under a reduction in the gap junction mediated electrical coupling. Utilizing islets from a gap junction protein connexin 36 knockout mouse model together with chemical inhibitors, we can modulate the electrical coupling in the islet in a precise manner and quantify this modulation by electrophysiology measurements. We find that after a reduction in electrical coupling, calcium waves are slowed as well as disrupted, and the number of cells showing synchronous calcium oscillations is reduced. This behavior can be reproduced by computational modeling of a heterogeneous population of β-cells with heterogeneous levels of electrical coupling. The resulting quantitative agreement between the data and analytical models of islet connectivity, using only a single free parameter, reveals the mechanistic underpinnings of the multicellular behavior of the islet.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18805925</pmid><doi>10.1529/biophysj.108.140863</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2008-12, Vol.95 (11), p.5048-5061
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2586567
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Biophysical Theory and Modeling
Calcium - metabolism
Calcium Signaling - drug effects
Calcium Signaling - genetics
Cattle
Electricity
Gap Junctions - drug effects
Gap Junctions - genetics
Gap Junctions - metabolism
Gene Knockout Techniques
Insulin-Secreting Cells - cytology
Insulin-Secreting Cells - metabolism
Islets of Langerhans - cytology
Islets of Langerhans - metabolism
Mice
Models, Biological
title Gap Junction Coupling and Calcium Waves in the Pancreatic Islet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gap%20Junction%20Coupling%20and%20Calcium%20Waves%20in%20the%20Pancreatic%20Islet&rft.jtitle=Biophysical%20journal&rft.au=Benninger,%20Richard%20K.P.&rft.date=2008-12-01&rft.volume=95&rft.issue=11&rft.spage=5048&rft.epage=5061&rft.pages=5048-5061&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.108.140863&rft_dat=%3Cproquest_pubme%3E864421127%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69806169&rft_id=info:pmid/18805925&rft_els_id=S000634950878932X&rfr_iscdi=true