Gap Junction Coupling and Calcium Waves in the Pancreatic Islet
The pancreatic islet is a highly coupled, multicellular system that exhibits complex spatiotemporal electrical activity in response to elevated glucose levels. The emergent properties of islets, which differ from those arising in isolated islet cells, are believed to arise in part by gap junctional...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2008-12, Vol.95 (11), p.5048-5061 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5061 |
---|---|
container_issue | 11 |
container_start_page | 5048 |
container_title | Biophysical journal |
container_volume | 95 |
creator | Benninger, Richard K.P. Zhang, Min Head, W. Steven Satin, Leslie S. Piston, David W. |
description | The pancreatic islet is a highly coupled, multicellular system that exhibits complex spatiotemporal electrical activity in response to elevated glucose levels. The emergent properties of islets, which differ from those arising in isolated islet cells, are believed to arise in part by gap junctional coupling, but the mechanisms through which this coupling occurs are poorly understood. To uncover these mechanisms, we have used both high-speed imaging and theoretical modeling of the electrical activity in pancreatic islets under a reduction in the gap junction mediated electrical coupling. Utilizing islets from a gap junction protein connexin 36 knockout mouse model together with chemical inhibitors, we can modulate the electrical coupling in the islet in a precise manner and quantify this modulation by electrophysiology measurements. We find that after a reduction in electrical coupling, calcium waves are slowed as well as disrupted, and the number of cells showing synchronous calcium oscillations is reduced. This behavior can be reproduced by computational modeling of a heterogeneous population of
β-cells with heterogeneous levels of electrical coupling. The resulting quantitative agreement between the data and analytical models of islet connectivity, using only a single free parameter, reveals the mechanistic underpinnings of the multicellular behavior of the islet. |
doi_str_mv | 10.1529/biophysj.108.140863 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2586567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634950878932X</els_id><sourcerecordid>864421127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-b236977766343ddd8e4f0a8eaef662a62dad9ff2d8d1311a0ab8a260219d062e3</originalsourceid><addsrcrecordid>eNp9kU1vFDEMhiNURJfCL0BCOZXTLE5mks0coKpWUIoqwQHEMfImnm6q2WRIZlbqv2eqXb4uPVm2H7-J_TL2SsBSKNm-3YQ0bO_L3VKAWYoGjK6fsIVQjaxgTk7YAgB0VTetOmXPS7kDEFKBeMZOhTGgWqkW7OIKB_55im4MKfJ1moY-xFuO0fM19i5MO_4D91R4iHzcEv-K0WXCMTh-XXoaX7CnHfaFXh7jGfv-8cO39afq5svV9frypnJKqbHayFq3q9VK67qpvfeGmg7QEFKntUQtPfq266Q3XtRCIODGoNQgRetBS6rP2PuD7jBtduQdxTFjb4ccdpjvbcJg_-_EsLW3aW-lMlrp1Szw5iiQ08-Jymh3oTjqe4yUpmKNbhophHwgzx8ldWtAC93OYH0AXU6lZOr-fEeAfbDI_rZoLhh7sGieev3vJn9njp7MwLsDQPM994GyLS5QdORDJjdan8KjD_wCu52kcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69806169</pqid></control><display><type>article</type><title>Gap Junction Coupling and Calcium Waves in the Pancreatic Islet</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Benninger, Richard K.P. ; Zhang, Min ; Head, W. Steven ; Satin, Leslie S. ; Piston, David W.</creator><creatorcontrib>Benninger, Richard K.P. ; Zhang, Min ; Head, W. Steven ; Satin, Leslie S. ; Piston, David W.</creatorcontrib><description>The pancreatic islet is a highly coupled, multicellular system that exhibits complex spatiotemporal electrical activity in response to elevated glucose levels. The emergent properties of islets, which differ from those arising in isolated islet cells, are believed to arise in part by gap junctional coupling, but the mechanisms through which this coupling occurs are poorly understood. To uncover these mechanisms, we have used both high-speed imaging and theoretical modeling of the electrical activity in pancreatic islets under a reduction in the gap junction mediated electrical coupling. Utilizing islets from a gap junction protein connexin 36 knockout mouse model together with chemical inhibitors, we can modulate the electrical coupling in the islet in a precise manner and quantify this modulation by electrophysiology measurements. We find that after a reduction in electrical coupling, calcium waves are slowed as well as disrupted, and the number of cells showing synchronous calcium oscillations is reduced. This behavior can be reproduced by computational modeling of a heterogeneous population of
β-cells with heterogeneous levels of electrical coupling. The resulting quantitative agreement between the data and analytical models of islet connectivity, using only a single free parameter, reveals the mechanistic underpinnings of the multicellular behavior of the islet.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.108.140863</identifier><identifier>PMID: 18805925</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biophysical Theory and Modeling ; Calcium - metabolism ; Calcium Signaling - drug effects ; Calcium Signaling - genetics ; Cattle ; Electricity ; Gap Junctions - drug effects ; Gap Junctions - genetics ; Gap Junctions - metabolism ; Gene Knockout Techniques ; Insulin-Secreting Cells - cytology ; Insulin-Secreting Cells - metabolism ; Islets of Langerhans - cytology ; Islets of Langerhans - metabolism ; Mice ; Models, Biological</subject><ispartof>Biophysical journal, 2008-12, Vol.95 (11), p.5048-5061</ispartof><rights>2008 The Biophysical Society</rights><rights>Copyright © 2008, Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-b236977766343ddd8e4f0a8eaef662a62dad9ff2d8d1311a0ab8a260219d062e3</citedby><cites>FETCH-LOGICAL-c555t-b236977766343ddd8e4f0a8eaef662a62dad9ff2d8d1311a0ab8a260219d062e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586567/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000634950878932X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18805925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benninger, Richard K.P.</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Head, W. Steven</creatorcontrib><creatorcontrib>Satin, Leslie S.</creatorcontrib><creatorcontrib>Piston, David W.</creatorcontrib><title>Gap Junction Coupling and Calcium Waves in the Pancreatic Islet</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The pancreatic islet is a highly coupled, multicellular system that exhibits complex spatiotemporal electrical activity in response to elevated glucose levels. The emergent properties of islets, which differ from those arising in isolated islet cells, are believed to arise in part by gap junctional coupling, but the mechanisms through which this coupling occurs are poorly understood. To uncover these mechanisms, we have used both high-speed imaging and theoretical modeling of the electrical activity in pancreatic islets under a reduction in the gap junction mediated electrical coupling. Utilizing islets from a gap junction protein connexin 36 knockout mouse model together with chemical inhibitors, we can modulate the electrical coupling in the islet in a precise manner and quantify this modulation by electrophysiology measurements. We find that after a reduction in electrical coupling, calcium waves are slowed as well as disrupted, and the number of cells showing synchronous calcium oscillations is reduced. This behavior can be reproduced by computational modeling of a heterogeneous population of
β-cells with heterogeneous levels of electrical coupling. The resulting quantitative agreement between the data and analytical models of islet connectivity, using only a single free parameter, reveals the mechanistic underpinnings of the multicellular behavior of the islet.</description><subject>Animals</subject><subject>Biophysical Theory and Modeling</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling - drug effects</subject><subject>Calcium Signaling - genetics</subject><subject>Cattle</subject><subject>Electricity</subject><subject>Gap Junctions - drug effects</subject><subject>Gap Junctions - genetics</subject><subject>Gap Junctions - metabolism</subject><subject>Gene Knockout Techniques</subject><subject>Insulin-Secreting Cells - cytology</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Islets of Langerhans - cytology</subject><subject>Islets of Langerhans - metabolism</subject><subject>Mice</subject><subject>Models, Biological</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1vFDEMhiNURJfCL0BCOZXTLE5mks0coKpWUIoqwQHEMfImnm6q2WRIZlbqv2eqXb4uPVm2H7-J_TL2SsBSKNm-3YQ0bO_L3VKAWYoGjK6fsIVQjaxgTk7YAgB0VTetOmXPS7kDEFKBeMZOhTGgWqkW7OIKB_55im4MKfJ1moY-xFuO0fM19i5MO_4D91R4iHzcEv-K0WXCMTh-XXoaX7CnHfaFXh7jGfv-8cO39afq5svV9frypnJKqbHayFq3q9VK67qpvfeGmg7QEFKntUQtPfq266Q3XtRCIODGoNQgRetBS6rP2PuD7jBtduQdxTFjb4ccdpjvbcJg_-_EsLW3aW-lMlrp1Szw5iiQ08-Jymh3oTjqe4yUpmKNbhophHwgzx8ldWtAC93OYH0AXU6lZOr-fEeAfbDI_rZoLhh7sGieev3vJn9njp7MwLsDQPM994GyLS5QdORDJjdan8KjD_wCu52kcA</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Benninger, Richard K.P.</creator><creator>Zhang, Min</creator><creator>Head, W. Steven</creator><creator>Satin, Leslie S.</creator><creator>Piston, David W.</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QP</scope><scope>5PM</scope></search><sort><creationdate>20081201</creationdate><title>Gap Junction Coupling and Calcium Waves in the Pancreatic Islet</title><author>Benninger, Richard K.P. ; Zhang, Min ; Head, W. Steven ; Satin, Leslie S. ; Piston, David W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-b236977766343ddd8e4f0a8eaef662a62dad9ff2d8d1311a0ab8a260219d062e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Biophysical Theory and Modeling</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling - drug effects</topic><topic>Calcium Signaling - genetics</topic><topic>Cattle</topic><topic>Electricity</topic><topic>Gap Junctions - drug effects</topic><topic>Gap Junctions - genetics</topic><topic>Gap Junctions - metabolism</topic><topic>Gene Knockout Techniques</topic><topic>Insulin-Secreting Cells - cytology</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Islets of Langerhans - cytology</topic><topic>Islets of Langerhans - metabolism</topic><topic>Mice</topic><topic>Models, Biological</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benninger, Richard K.P.</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Head, W. Steven</creatorcontrib><creatorcontrib>Satin, Leslie S.</creatorcontrib><creatorcontrib>Piston, David W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benninger, Richard K.P.</au><au>Zhang, Min</au><au>Head, W. Steven</au><au>Satin, Leslie S.</au><au>Piston, David W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gap Junction Coupling and Calcium Waves in the Pancreatic Islet</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>95</volume><issue>11</issue><spage>5048</spage><epage>5061</epage><pages>5048-5061</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The pancreatic islet is a highly coupled, multicellular system that exhibits complex spatiotemporal electrical activity in response to elevated glucose levels. The emergent properties of islets, which differ from those arising in isolated islet cells, are believed to arise in part by gap junctional coupling, but the mechanisms through which this coupling occurs are poorly understood. To uncover these mechanisms, we have used both high-speed imaging and theoretical modeling of the electrical activity in pancreatic islets under a reduction in the gap junction mediated electrical coupling. Utilizing islets from a gap junction protein connexin 36 knockout mouse model together with chemical inhibitors, we can modulate the electrical coupling in the islet in a precise manner and quantify this modulation by electrophysiology measurements. We find that after a reduction in electrical coupling, calcium waves are slowed as well as disrupted, and the number of cells showing synchronous calcium oscillations is reduced. This behavior can be reproduced by computational modeling of a heterogeneous population of
β-cells with heterogeneous levels of electrical coupling. The resulting quantitative agreement between the data and analytical models of islet connectivity, using only a single free parameter, reveals the mechanistic underpinnings of the multicellular behavior of the islet.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18805925</pmid><doi>10.1529/biophysj.108.140863</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2008-12, Vol.95 (11), p.5048-5061 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2586567 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Biophysical Theory and Modeling Calcium - metabolism Calcium Signaling - drug effects Calcium Signaling - genetics Cattle Electricity Gap Junctions - drug effects Gap Junctions - genetics Gap Junctions - metabolism Gene Knockout Techniques Insulin-Secreting Cells - cytology Insulin-Secreting Cells - metabolism Islets of Langerhans - cytology Islets of Langerhans - metabolism Mice Models, Biological |
title | Gap Junction Coupling and Calcium Waves in the Pancreatic Islet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gap%20Junction%20Coupling%20and%20Calcium%20Waves%20in%20the%20Pancreatic%20Islet&rft.jtitle=Biophysical%20journal&rft.au=Benninger,%20Richard%20K.P.&rft.date=2008-12-01&rft.volume=95&rft.issue=11&rft.spage=5048&rft.epage=5061&rft.pages=5048-5061&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.108.140863&rft_dat=%3Cproquest_pubme%3E864421127%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69806169&rft_id=info:pmid/18805925&rft_els_id=S000634950878932X&rfr_iscdi=true |